

Proceedings of the 2009 U.S. Environmental Protection Agency Workshop on Innovative Approaches for Detecting Microorganisms and Cyanotoxins in Water

MAY 20 - 21, 2009 REGION 3 OFFICES PHILADELPHIA, PA

The 2009 U.S. Environmental Protection Agency Workshop on Innovative Approaches for Detecting Microorganisms and Cyanotoxins in Water

May 20 - 21, 2009

EPA Region 3 Offices Shenandoah Room, #104 1650 Arch Street Philadelphia, PA

Workshop Objectives

- Provide a forum to discuss proposed solutions to the methodological challenges in the search for better methods of detection and assessment of waterborne microbial contaminants.
- Facilitate collaboration and cooperation among scientists and policy-makers from research entities, EPA, states, local agencies, and stakeholders.
- Assist EPA in identifying what research or technologies are needed to better inform decisions and/or policies associated with the assessment of microorganisms in water.
- Give STAR grantees of the past two solicitations regarding "Development and Evaluation of Innovative Approaches for the Quantitative Assessment of Pathogens and Cyanobacteria and Their Toxins in Drinking Water" the opportunity to present their latest findings. Summaries of the grantees' projects can be found at:
 http://epa.gov/ncer/rfa/2005/2005_pathogens_drinking_water.html and
 http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/recipients.display/rfa_id/456/records-per_page/ALL

Wednesday, May 20, 2009

1:00 p.m.	Welcome and Overview of EPA's Office of Research and Development and the Science To Achieve Results (STAR) Program Barbara Klieforth, EPA, Office of Research and Development, National Center for Environmental Research
1:25 p.m.	OGWDW Microbial Research Needs from a Regulatory Perspective Sandhya Parshionikar, Team Leader, Microbiology Technical Support Center Office of Ground Water and Drinking Water
1:55 p.m.	Overview Presentation From EPA Region 3 Victoria P. Binetti, EPA, Region 3
2:15 p.m.	Crypto and Molecular Methods Work Being Done With EPA Regions 2 and 3 Eric Villegas, EPA, National Exposure Research Laboratory, Microbiological and Chemical Exposure Assessment Research Division

Wednesday, May	20, 2009 (continued)
2:35 p.m.	Development of a Universal Microbial Collector (UMC) for Enteric Pathogens in Water and Its Application for the Detection of Contaminant Candidate List Organisms in Water Kelly R. Bright, University of Arizona
2:55 p.m.	Break
3:15 p.m.	Development and Evaluation of an Innovative System for the Concentration and Quantitative Detection of CCL Pathogens in Drinking Water Saul Tzipori, Tufts University
3:35 p.m.	On-Chip PCR, Nanoparticles, and Virulence/Marker Genes for Simultaneous Detection of 20 Waterborne Pathogens Syed Hashsham, Michigan State University
3:55 p.m.	Rapid and Quantitative Detection of <i>Helicobacter pylori</i> and <i>Escherichia coli</i> O157 in Well Water Using a Nano-Wired Biosensor and QPCR Evangelyn C. Alocilja, Michigan State University
4:15 p.m.	Assessment of Microbial Pathogens in Drinking Water Using Molecular Methods Coupled With Solid-Phase Cytometry Barry Pyle, Montana State University
4:35 p.m.	Detecting Pathogens in Water by Ultrafiltration and Microarray Analysis Anthea K. Lee, Metro Water District of Southern California
5:00 p.m.	Adjourn
Thursday, May 2	1, 2009
8:30 – 9:00 a.m.	Robust Piezoelectric-Excited Millimeter-Sized Cantilever Sensors for Detecting Pathogens in Drinking Water at 1 Cell/Liter Raj Mutharasan, Drexel University
9:00 – 9:20 a.m.	National Risk Management Research Laboratory (NRMRL) Microbial

Division, Microbial Contaminants Control Branch

Zhiqiang Hu, University of Missouri

Jorge Santo Domingo, EPA, NRMRL, Water Supply and Water Resources

Rapid Concentration, Detection, and Quantification of Pathogens in

Research

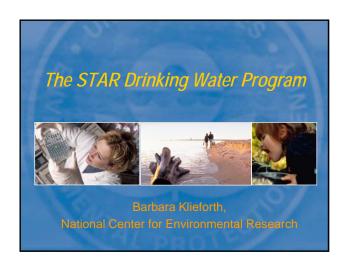
Drinking Water

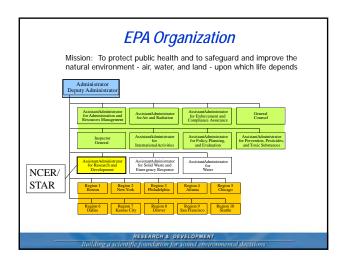
9:20 – 9:40 a.m.

Thursday, May 21	, 2009, (continued)
9:40 – 10:10 a.m.	Simultaneous Concentration and Real-Time Detection of Multiple Classes of Microbial Pathogens From Drinking Water Mark D. Sobsey, University of North Carolina at Chapel Hill
10:10 – 10:30 a.m.	Break
10:30 – 10:50 a.m.	Quantitative Assessment of Pathogens in Drinking Water Kellogg Schwab, Johns Hopkins University
10:50 – 11:40 a.m.	Discussion on the Next Generation of Methods and Research Needs
11:40– noon.	Development and Application of a Fiber Optic Array System for Detection and Enumeration of Potentially Toxic Cyanobacteria Donald Anderson, Woods Hole Oceanographic Institute
12:00 – 1:10 p.m.	Lunch
1:10 – 1:30 p.m.	Development of High-Throughput and Real-Time Methods for the Detection of Infective Enteric Viruses Jason Cantera, University of California at Riverside
1:30 – 1:50 p.m.	New Electropositive Filter for Concentrating Enterovirus and Norovirus From Large Volumes of Water Mohammad Karim, Oak Ridge Institute for Science and Education Research Fellow, EPA
1:50 – 2:10 p.m.	Automated Methods for the Quantification and Infectivity of Human Noroviruses in Water Timothy Straub, Batelle Pacific Northwest Division
2:10 – 2:30 p.m.	Characterization of Naturally Occurring Amoeba-Resistant Bacteria From Water Samples Sharon Berk, Mid-Tennessee State University
2:30 – 2:50 p.m.	Break
2:50 – 3:10 p.m.	Analysis of Various Toxins Produced by Cyanobacteria Using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry (UPLC/MS/MS) Stuart Oehrle, Northern Kentucky University
3:10 – 3:20 p.m.	Development of Sensitive Immunoassay Formats for Algal Toxin Detection Fernando Rubio, Abraxis LLC
3:20 – 4:00 p.m.	Wrap-up & Adjournment

The 2009 U.S. Environmental Protection Agency Workshop on Innovative Approaches for Detecting Microorganisms and Cyanotoxins in Water

May 20 - 21, 2009


EPA Region 3 Offices Shenandoah Room, #104 1650 Arch Street Philadelphia, PA


This workshop was intended to facilitate progress on the quantitative assessment of microbial agents in water and bring research scientists together with policy makers. EPA's success is dependent, in large part, on its ability to make credible environmental decisions based on solid scientific information and technical methodologies. Reliable, sensitive, robust, and versatile detection and monitoring tools are needed to address the risk assessment and management of known and emerging microbial contaminants in source water, treated water, and/or distribution systems. The goal of this workshop was to foster discussion on the development of cost-effective, timely, and innovative technology solutions in assessing and managing environmental risks to human health.

Workshop Objectives

- Provide a forum to discuss proposed solutions to the methodological challenges in the search for better methods of detection and assessment of waterborne microbial contaminants.
- Facilitate collaboration and cooperation among scientists and policy makers from research entities, EPA, states, local agencies, and other stakeholders.
- Assist EPA in identifying what research or technologies are needed to better inform decisions and/or policies associated with the assessment of microorganisms in water.
- Give Science To Achieve Results (STAR) grantees of the past two solicitations regarding "Development and Evaluation of Innovative Approaches for the Quantitative Assessment of Pathogens and Cyanobacteria and Their Toxins in Drinking Water" an opportunity to present their latest findings. Abstracts of the grantees' projects can be found at:
 http://epa.gov/ncer/rfa/2005/2005_pathogens_drinking_water.html and

http://epa.gov/ncer/rfa/2005/2005_pathogens_drinking_water.html and http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/recipients.display/rfa_id/45_6/records_per_page/ALL

EPA STAR Program

• Established in 1995 as part of the overall reorganization of ORD

• Mission: include this country's universities and nonprofit groups in EPA's research program and ensure the best possible quality of science in areas of highest risk and greatest importance to the Agency

• Issue approximately 20-25 RFAs each year

• Each year: receive 2500-3200 grant applications

• Award about 250-300 new STAR grants, fellowships & SBIR contracts per year

• Manage about 1000 active research grants and fellowships

**RESEARCH & DEVELOPMENT.

Building a scientific foundation for sound environmental decisions

Goal-directed solicitation planning
 Significant cross-agency and interagency involvement with solicitation planning, writing, and review
 Competitive solicitations
 Joint Solicitations with other Agencies
 External peer review
 Internal relevancy review: program office and regional input
 Fund highest priority projects
 Grantees and fellows are among the top scientists in the country
 Communicate research results through website, ORD laboratories, program office and regional meetings, and publications (www.epa.gov/ncer)

RESEARCH PEYELOPMENT
Building a scientific foundation for sound environmental decisions

Science To Achieve Results (STAR) Program

STAR Results in Action: Regulations and Voluntary Actions

- Results from the Marshfield Clinic Research Foundation's research led to major, statewide changes (e.g., UV disinfection) in treatment of water from groundwater sources (*Borchardt*)

- treatment of water from groundwater sources (Borchardt)
 UNC at Chapel Hill examined impacts of water distribution
 systems in contributing to GI illness, results are included in
 considerations for updating the Total Coliform Rule (Tolbert)
 Results used by EPA's Office of Water in preparing: "Economic,
 Environmental, and Benefits Analysis of the proposed Metal
 Products & Machinery Rule" (Herriges)
 University of lowa findings on mechanisms and kinetics of
 chloramine loss & byproduct formation in distribution systems
 used in the Stage 2 Disinfectants and Disinfection Byproducts
 (DBP) rule published in 2006
 STAR research results on "integrated pest management" used by
 cities & states to reduce childrens' exposures to pest allergens
 STAR research findings led to voluntary industry action —
 protective clothing and hand-washing facilities for agricultural
 workers expected to reduce "take home" pesticide exposures

STAR Results in Action:

Tools and Methods for Decision Making

- University of Maryland's Center for Marine Biotechnology's 1st of its kind PCR technique that rapidly detects *Helicobacter pylori* in environmental samples. *H. pylori* had previously been extremely difficult to detect because of its ability to transform into a non-culturable form.
- STAR researchers developed molecular detection techniques for pfisteria used by states and CDC for real time monitoring of pfisteria
- STAR research developed promising method for assessing pesticide concentrations in saliva accurate & less invasive method to quantify exposure & dose
- Rapid assessment protocol for stream biomass developed used in OW guidance document and by states
- Research played a key role in the preparation of a manual on economic valuation for the British Department of Environment, Regions, and Transport (Carson)

STAR & SBIR Results in Action:

Practical Applications

- Tufts' U. alternative method (portable continuous flow centrifuge) for concentrating low numbers protozoa from large volumes of water approved as an alternative concentration method by EPA (Tzipori)
- Soybean oil plastics being used to manufacture tractor parts for John Deere (Wool)
- Developed a benign catalyst to replace chlorine in oxidation processes (Collins)
- Developed a substitute for lead solder now used broadly in the electronics industry (Wong)
- STAR-supported grant research has led to new, environmentally friendly packaging manufactured by Cargill-Natureworks and used by the Wal-Mart Corporation Advanced Technology Materials, Inc developed dry scrubber using deposition for semiconductor industry. Business grew from five partners to 1100 employees and sales over \$250 million (NASDAQ: ATMI)

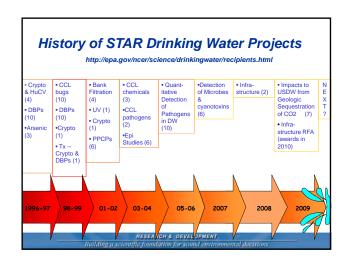
STAR Results in Action: Education

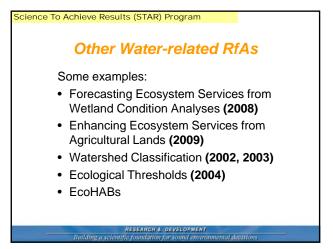
- · New course in green engineering
- Fellows are now professors in many, major universities
- Fellows are working in government agencies
- Fellows elected to 36 scientific panels and/or advisory committees
- Sustainability curricula expanded in many universities as a direct result of P3
- Four new small businesses created because of

Science To Achieve Results (STAR) Program

NCER's Drinking Water Program

- · Program begun in FY 1996
- Funding levels historically between \$2.5-5.0 M/yr
- NCER has been funded research in a wide variety of areas
- Research completed 3-4 years after award
- Solicitation preparation and Programmatic Reviews have extensive participation from OW, ORD, and **Regional Offices**


RESEARCH & DEVELOPMENT


Drinking Water (& Water Quality)

- Current components
 - Identifying and quantifying microbes in water
 - Decision making for water infrastructure sustainability
 - Source water/aquifer protection from potential impacts of geologic sequestration of carbon dioxide
- Recent solicitations

 - Integrated Design, Modeling, and Monitoring of Geologic Sequestration of Anthropogenic Carbon Dioxide to Safeguard Sources of Drinking Water Development and Evaluation of Innovative Approaches for the Quantitative Assessment of Pathogens and Cyanobacteria and Their Toxins in Drinking Water
 - Innovative and Integrative Approaches for Advancing Public Health Protection Through Water Infrastructure Sustainability

RESEARCH & DEVELOPMENT

Overview

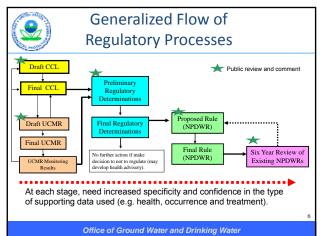
- The SDWA requirements and regulatory process.
- · Research input in Drinking water regulations
- · Sources of data used
- Research Needs
 - General
 - Specific issue
 - Total Coliform Rule
 - Revisions
 - Research and Information Collection Partnership
 - Long term

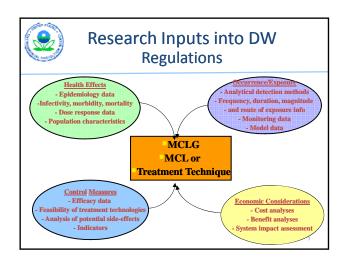
Office of Ground Water and Drinking Water

Safe Drinking Water Act

SDWA requires regulation of contaminants that:

- May have an adverse health effect
 - must consider sensitive sub-populations of infants, children, pregnant women, elderly, individuals with history of serious illness
- Occur or are likely to occur in PWSs (considering frequency and level)
- Present a meaningful opportunity for health risk reduction
 - based on best available science and data


Safe Drinking Water Act Requirements


- EPA must publish Maximum Contaminant Level Goals (MCLGs)
 - Must set levels at which no health effects occur and which allows for adequate margin of safety
 - Required EPA to regulate specific microbial contaminants (viruses, Giardia, Legionella, total coliforms, heterotrophic
- EPA must promulgate MCLs or treatment technique requirement as close to the MCLG as is "feasible" (taking costs into consideration)
 - Required EPA to set treatment technique requirements for surface and ground water systems to protect for pathogens

Safe Drinking Water Act Requirements

- EPA must develop Contaminant Candidate List (CCL) for unregulated contaminants every 5 years
 - Establish criteria for a program (UCMR) to monitor unregulated contaminants, and to identify no more than 30 contaminants to be monitored, every five years.
 - Perform regulatory determination on five of CCL contaminants every
- Requiring the Agency to review and revise, as appropriate, each National Primary Drinking Water Regulation no less often than every 6 years
 - Revisions must assure public health protection (the net effect of the rule must be to maintain or improve public health protection)

Sources of Research Data Used

- · EPA Office of Research and Development
 - In house research
 - STAR grants
- Regions
- Water Research Foundation (formerly AwwaRF)
- Contracts with Universities and research institutions
- · Interagency agreements
- · Co-operative agreements
- · Other published, peer reviewed literature

Office of Ground Water and Drinking Water

Regulatory Drivers: Some Near Term Examples

- CCL 4
- UCMR 4
- Regulatory Determinations 3
- DS information collection
- · 6 year review

Office of Ground Water and Drinking Water

Research Needs: General

- · Exposure Data
 - Analytical Methods
 - · Innovative approaches to measurement
 - · Practical implementable technologies
 - Occurrence data
 - Outbreak analyses
 - Endemic prevalence
 Epidemiological studies
- Health effects
 - Dose response
 - Subpopulations affected
 - Host factors involved

Office of Ground Water and Drinking Water

Research Needs: General

- Treatment
 - Behavior of pathogens under different types of treatment conditions
 - Novel strategies for contamination mitigation
- · Other research
 - Pathogen virulence
 - Role of host factors in infectivity
 - Fate and transport of pathogens under environmental conditions

Office of Ground Water and Drinking Water

Research Needs: Examples of Specific Issues

- Methods that detect pathogen infectivity/viability/strain identification
- Exposure to pathogens from drinking water contamination events
- Role of Biofilms in pathogen exposure and their impact on chlorine residuals
- Survival of nucleic acids under various treatments
- · Innovative approaches for sampling and detection
- · Research in Support of Revised TCR/DS

Office of Ground Water and Drinking Water

Total Coliform Rule (TCR)

2000 - Stage 2 Federal Advisory Committee (FAC) Agreement In Principle (AIP) suggested review of distribution system issues with the 6-year review of the TCR

2003 - Six year review of existing drinking water regulations \rightarrow TCR should be revised

2007 - Federal Advisory Committee convened to provide recommendations on

•how EPA should revise the TCR, and

•what research and information collection should be conducted to better inform distribution system risk

Office of Ground Water and Drinking Water

🛂 Total Coliform Rule Revisions

The Advisory Committee developed an AIP to be the foundation for the proposed rule

- A more proactive approach to public health protection
- Use of monitoring results shift from informing public notification to informing investigation and corrective action

2010: Propose rule revisions

2012: Final rule

2015: compliance starts

 Includes recommendations for distribution system research and information collection and the formation of a Research and Information Collection Partnership

Office of Ground Water and Drinking Water

Research and Information Collection Partnership (RICP)

Recommended by TCR Federal Advisory Committee to:

- Inform and support the drinking water community to develop future risk management decisions regarding drinking water distribution systems
- Partnership formed January 29, 2009 between EPA and Water Research Foundation
- Steering Committee provides input on research and information collection priorities
 - 3 members from EPA
 - 3 members from water utilities
 - 3 additional members
 - Public health
 Environmental
 - State Regulator
 - Regulator

Office of Ground Water and Drinking Water

Research and Information Collection Partnership (RICP)

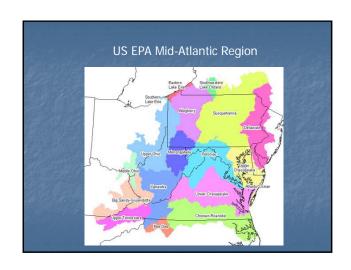
- Develop a research agenda to identify decision relevant research and information collection needs or priorities
 - Biofilms
- Contaminant Accumulation
- Nitrification
- Main Repair
- IntrusionStorage
- •Cross Connection Control
- -First Draft Research Agenda September 2009
- -Initial priorities for research and information collection identified 2010

Office of Ground Water and Drinking Water

Long Term Research Needs

- · Online monitoring/Rapid results
 - Perturbations in water quality
 - Outbreak analysis
 - Quantitative
 - Genotyping/Strain identification
 - Sensitivity
- · High through put detection
- · Universal detection of all classes of pathogens
- Miniaturization of technology
 - Use in field
- · Genomics/Proteomics

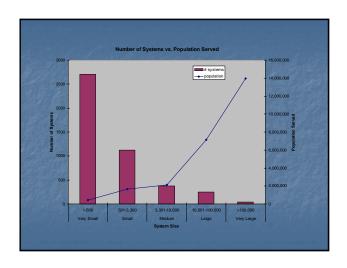

Office of Ground Water and Drinking Water

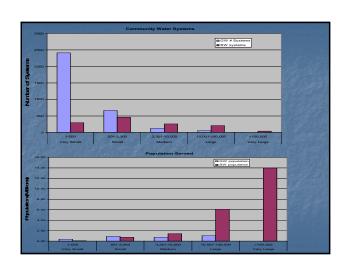


New STAR RFA

- EPA seeking new and innovative research applications that link opportunities to advance public health protection with improvements in the condition and function of the water infrastructure.
- The focus on improving the effectiveness of the water infrastructure for protecting public health.
- Should clearly demonstrate an integrated, multi-disciplinary approach that leads to advances in design, operation, and management of the water infrastructure and should directly tie those advances to public health protection in conjunction with improving water efficiency and reducing energy requirements.
- http://www.epa.gov/ncer/rfa/2009/2009_star_water_infrastructure.ht ml.

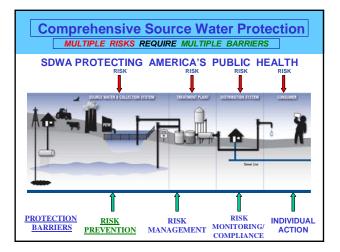
Office of Ground Water and Drinking Water




We are employing a "Healthy Waters" strategy to restore and protect our waters by

Protecting four water uses
Aquatic life
Recreation
Fish consumption
Drinking water health

Reducing causes of impairment
Nutrients
Sediments
Toxics
Pathogens



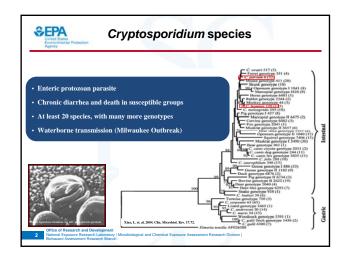
Some observations on drinking water program implementation in Region 3

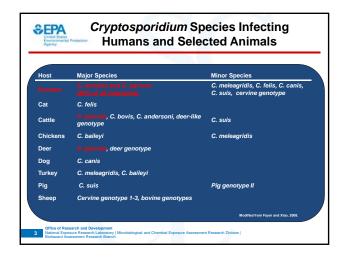
- Many public water systems are small, underresourced, and have limited technical capacity
- Greatest number of violations overall are related to monitoring
- Most frequent health-based violations relate to pathogen regulations: Total Coliform Rule, Surface Water Treatment Rules
- Newer regulations requiring source water sampling are challenging

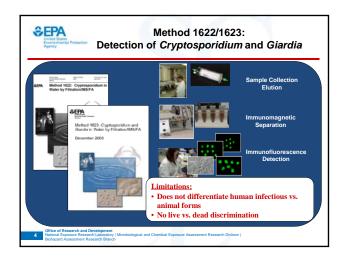
Implementing a multi-barrier approach to safe drinking water:

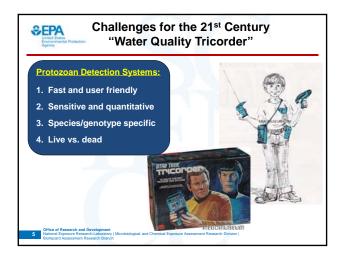
- Prevent/Reduce pathogens in source
- Eliminate/Inactivate pathogens through treatment
- Assess/Monitor to detect pathogen occurrence in finished water
- Assess exposure, health effects

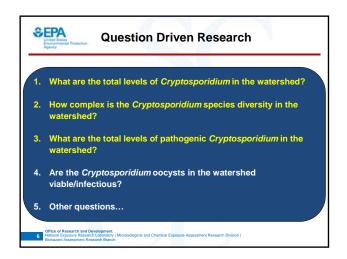
Needs today from the field include:

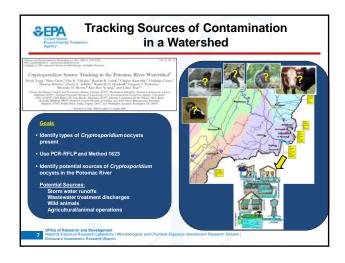

- Monitoring & quantification methods *Cryptosporidium*, bacteria, viruses Low-cost, reliable
 - Tools for viability assessment, speciation
- Pathogen indicators
- Real-time E. coli identification
- Efficacy of best management practices for nutrient & sediment control, in prevention of pathogen contamination
- Efficacy of best management practices used for protection of surface waters, in protection of ground water

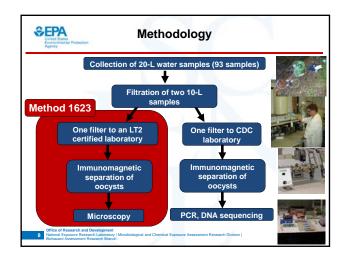

Issues for the Research Agenda

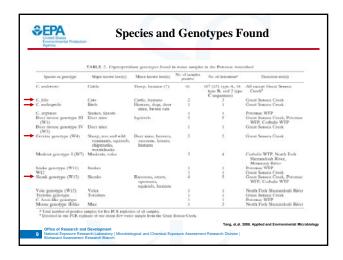

- Distribution system is the next frontier
- Aging, deteriorating infrastructure increases pathogen exposure risk
- Longer-lived, healthier—but more vulnerable---population?
- Impacts of population growth, climate change and patterns of development on water use and water supply needs will drive treatment and technology – e.g., water efficiency, water reuse, aquifer storage & recovery, etc.
- Climate change will affect pathogen distributions, geographically and seasonally Water security concerns will remain—detection, response, recovery

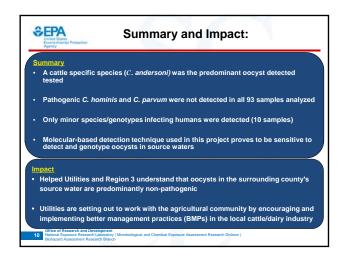


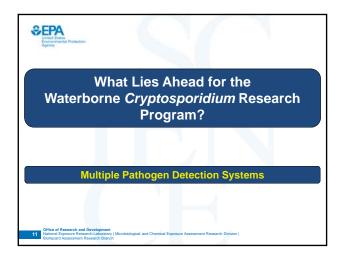


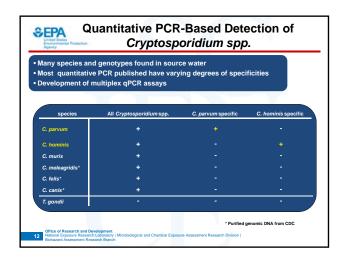


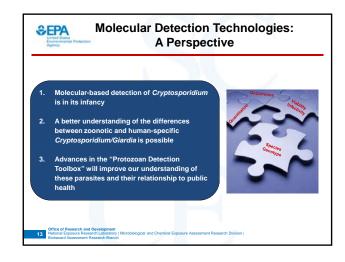


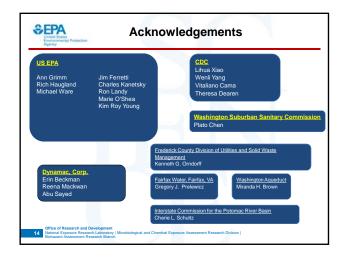


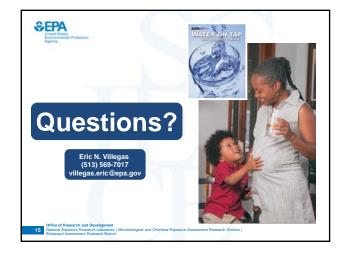












Development of a Universal Microbial Collector (UMC) for Enteric Pathogens in Water

Kelly R. Bright
Charles P. Gerba
Dept. of Soil, Water & Environmental Science

Project Aim

To develop a low cost universal microbial concentrator for application to water.

Universal Microbial Concentrator Requirements

- Simple, easy to operate
- High capacity
- High flow rate
- Low cost
- Concentrates diverse microorganisms
- Elution efficiencies similar to existing methods
- Limit interfering substances

Universal Microbial Concentrator Positively charged concentrating microorganisms Pressore spray tank Polymerase Chain Reaction (PCR) Cell culture for viruses Cell culture for viruses

Identification:

- Culture methods (bacteria)
- Microscopy (parasites)
- PCR/cell culture (viruses)

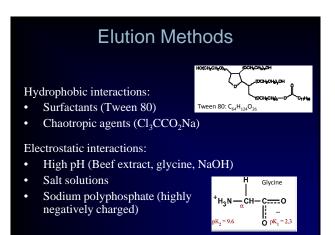
Cuno Carbon Nanofiber Filters Charge-modified granular carbon nanofibers Highly porous Large surface area Highly positively charged

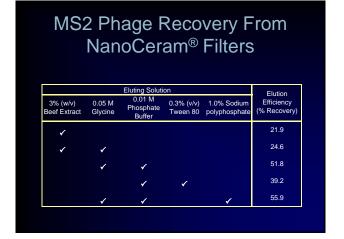
Organism	Influent Volume (L)	Influent titer (per liter)	Effluent titer (per liter)	Log ₁₀ Reduction	Adsorbed microbes (per gram carbon)
MS-2 phage	10	1.9 x 10 ⁸	< 250	> 5.87	> 3.0 x 10 ⁷
	125	1.2 x 10 ⁸	< 250	> 5.66	> 2.3 x 10 ⁸
p22 phage	10	3.5 x 10 ⁸	< 250	> 6.14	> 5.6 x 10 ⁷
	125	1.0 x 10 ⁸	< 250	> 5.60	> 2.0 x 10 ⁸
fr phage	10	2.5 x 10 ⁸	< 250	> 5.99	> 4.0 x 10 ⁷
	125	1.4 x 10 ⁸	< 250	> 5.74	> 2.8 x 10 ⁸
ΦX-174 phage	10	3.4 x 10 ⁷	< 250	> 5.12	> 5.4 x 10 ⁶
ψχ 114 phage	125	5.5 x 10 ⁷	< 250	> 5.34	> 1.1 x 10 ⁸
Qβ phage		4.0 x 10 ⁸	< 250	> 6.20	> 6.5 x 10 ⁷
Poliovirus / Rotavirus		2.0 x 10 ⁷		> 5.26	> 3.2 x 10 ⁶
Adenovirus 40		1.0 x 10 ⁷		> 4.96	> 1.6 x 10 ⁶
Feline Calicivirus		1.0 x 10 ⁷		> 4.96	> 1.6 x 10 ⁶
Human Norovirus		1.0 x 10 ⁷		> 4.96	> 1.6 x 10 ⁶
Hepatitis A Virus	10	1.0 x 10 ⁷	< 111	> 4.96	> 1.6 x 10 ⁶

Adsorption	of parasite	s onto cha	ırge-modifi	ed carbon	nanofibers
Organism	Influent Volume (L)	Influent titer (per liter)	Effluent titer (per liter)	Log ₁₀ Reduction	Adsorbed microbes (per gram carbon)
Cryptosporidium parvum oocysts	10	1.0 x 10 ⁶	< 100	> 4.00	> 1.6 x 10 ⁴

Argonide NanoCeram® Virus Sampler Filters

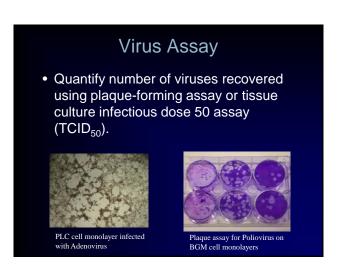
- Inexpensive: \$40/filter (1MDS: \$175/filter)
- High flow rates (up to 19 L/min)


NanoCeram® Virus Filters


- Alumina nanofibers [Al(OH)₂] on microglass fiber matrix
- Electropositive, non-woven, pleated, average pore size = 0.2μm
- Pre-sterilized
- Effective for fresh, brackish, seawater
- pH 5-10; Temps. 4-50°C

Experimental Protocol

- Test organism added to dechlorinated tap water at 2.0x10⁸ pfu / 20 L in a pressure vessel.
- Pressure applied ($\sim 2 \text{ p.s.i.}$) = flow rate of 2.0 L/min.
- Effluent samples collected to determine capture efficiency.
- 450 ml of eluting solution added to the filter housing (30 min hold).
- Eluting solution back flushed through the filter and collected (pH adjusted to 7.5).
- Eluent back flushed a second time.
- Eluent assayed for virus recovery.



Secondary Concentration Step

Volume reduction - centrifuge tube ultrafiltration (Vivaspin concentrator)

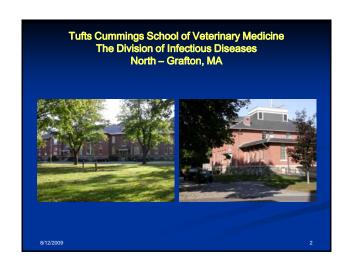
Reduces volume ~1000-fold (from 150 ml to ~150 µl)

Recovery of Microorganisms from NanoCeram® Filters

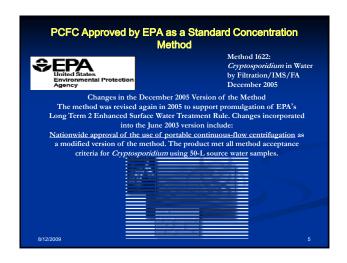
Test Organism	рН	Filter Retention (%)	Elution Efficiency (%)	Method Efficiency After Concentration Step (%)
MS2 bacteriophage	9.3	99.95	55.9	54.6
Poliovirus 1	9.3	99.92	41.4	25.0
Adenovirus 2	9.3	99.90	36.8	22.2
Coxsackie B5	9.3	99.89	51.7	31.9
Echovirus 1	9.3	99.65	107	163.5
Escherichia coli	9.3	99.997	6.7	ND

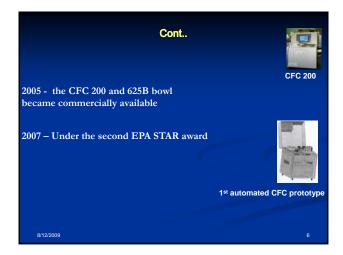
Method Advantages

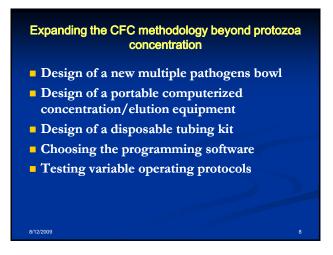
- Much lower cost (\$40 for NanoCeram® filters vs. \$175 for 1MDS filters)
- No organics used in the elution step
- Reduced volume ($\sim 200 \, \mu l \, vs. \sim 20 \, ml$)
- Higher efficiencies than those reported for some enteric viruses.

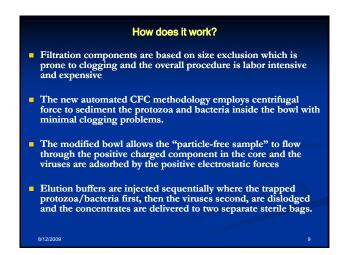

Future Work

- Comparison to existing methods in a field study collecting surface water samples in Arizona, Michigan, and Mexico:
 - 1MDS filters, ultrafiltration
 - Adenoviruses, enteroviruses
 - cell culture, polymerase chain reaction
- Evaluate physical methods for recovery of parasites (Microsporidia) from NanoCeram® filters.

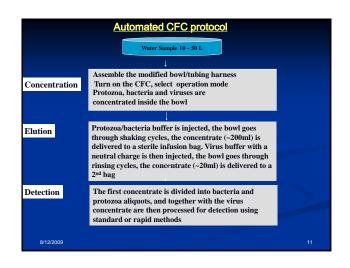




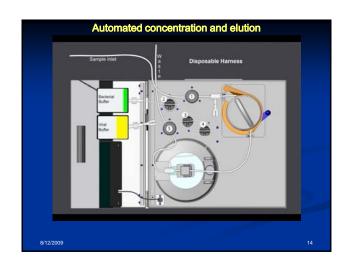

Overview
 Milestones of the Continuous Flow Centrifugation methodology (CFC) developed at Tufts Objectives of the current STAR award 2006 – 2009 Progress: new automated method/equipment for multiple waterborne pathogens Future tasks Acknowledgements
8/12/2009


compared to Method 1623 criteria				
Matrix/Organism	Method 1623 Acceptable Range of Mean Recovery (%)	CFC Study Mean Recovery (%)		
Reagent Water Cryptosporidium	21-100	42.5		
Giardia	17-100	47.2		
Source Water Cryptosporidium	13-111	37.4		
Giardia	15-118	32.6		





Objectives for 2006-2009 Simultaneous concentration of representative microorganisms from each group of the CCL list Validation of the concentration methodology Detection and quantitative identification of the CCL list using multiplex miniaturized fiber optic bead microarrays coupled with a compact scanner Side by side comparison of this detection methodology with EPA standard methods



Recovery efficiency of the automated CFC with 10 L tap water samples spiked with multiple microorganisms

C. parvum were spiked and the oocysts detected from the concentrate using method 1623

MS2 bacteriophages (ATCC 15597-B1) were spiked and detected from the concentrate using the agar overlay method (the host was E. coli 1559)

B. anthracis spores (kanamycin resistant strain, sterne) detected by MF

Recovery of C. parvum oocysts, B. anthracis, and MS2
bacteriophages from 10L tap water samples using an automated CFC
and a modified bowl (9,000rpm & 0.5 liter/min)

| Spiked samples using an automated CFC samples using an automated CFC samples (P,000rpm & 0.5 liter/min)

| Spiked samples using an automated CFC samples using an automated CFC samples (P,000rpm & 0.5 liter/min)

| Spiked samples using an automated CFC samples (P,000rpm & 0.5 liter/min)

| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| Spiked samples using an automated CFC samples (P,000rpm & 0.5 liter/min)

| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/min)
| MS2 samples (P,000rpm & 0.5 liter/mi

Detection and integration We have concentrated on the detection of DNA isolated from *E. coli* as a model system. We have demonstrated the detection of PCR amplicons from three virulence genes using multiplexed beadbased microarrays. We expanding the protocol and microarray to include all bacteria and viruses listed as CCL3 candidates as listed

CCL3 candidates Caliciviruses Campylobacter jejuni Entamoeba histolytica Escherichia coli (0157) Helicobacter pylori Hepatitis A virus Legionella pneumophila Naegleria fowleri Salmonella enterica Shigella sonnei Vibrio cholerae

Accomplishments Recovery (%) for 10L Recovery (%) for 50L A prototype automated pathogen concentrator was designed and constructed This includes modification of the hardware and of the disposables N = 2 N = 12 100±1 40±0.06 ~ 40 The device weighs: 45lb; 110/220AC/12 VDC Capable of simultaneous 50±5 34±0.14 ~ 30 concentration of protozoa (Cryptosporidium), bacterial spores (B. anthracis) and MS2 from volumes of 10-50L MS2 10⁵ 43±0.3 ~ 50 Computer programmable PLC capable of handling numerous automated protocols

The next phase
 Walt's lab is currently working on the bioinformatix of the CCL list for the microarray detection: this will be completed over the next 12 months
Once the detection platform is complete, the automated CFC spiked concentrates will be applied and qunatitated
 The detection will be compared with currently approved standard methods
Ideally this approach should be evaluated by water testing labs – filed testing, as was done for C. parvum and Giardia
Evaluate the technology as a continuous monitoring system
8/12/2009 21

Acknowledgements
■ EPASTAR program (RD 83300301) which is funding this work
 Haemonetics for technical and material support over the past 10 years
 Staff of the Division of Infectious Diseases for technical support
8/12/2009 22

On-chip PCR, Nanoparticles, and Virulence/Marker Genes for Simultaneous Detection of 20 Waterborne Pathogens

U.S. EPA Workshop on Innovative Approaches for Detecting Microorganisms and Cyanotoxins in Water

Philadelphia, PA

May 20, 2009 3:15 PM

Syed A. Hashsham

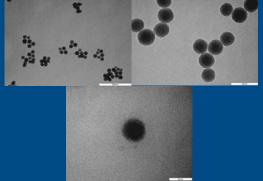
Edwin Willits Associate Professor

Volodymyr Tarabara

James M. Tiedje
Iniversity Distinguished Professor and

Department of Civil and Environmental Engineering and Center for Microbial Ecology Michigan State University

Objectives

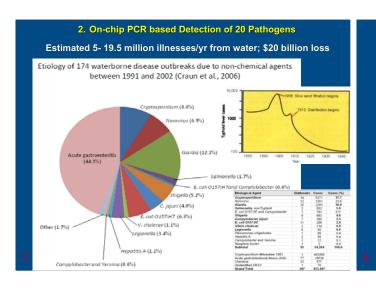

- 1. Reducing the Time to Detect Growth using Dye-doped Nanoparticles
- 2. On-chip PCR based Detection of 20 Pathogens
- 3. Enhancement in Sample Concentration by Cross-flow Filtration

A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles

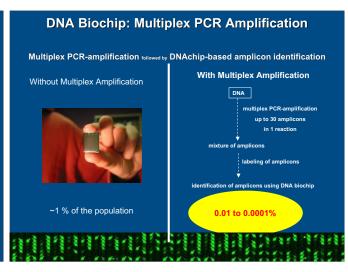
A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles

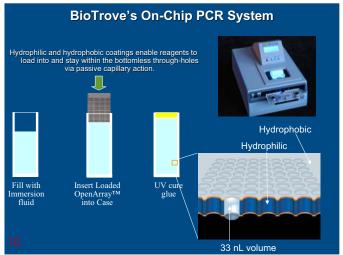
The state of the control of the state of the

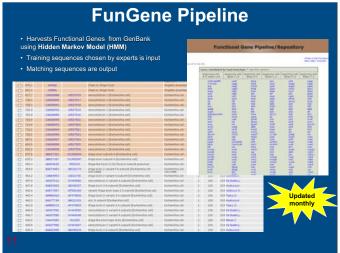
Nano-particles for monitoring of growth

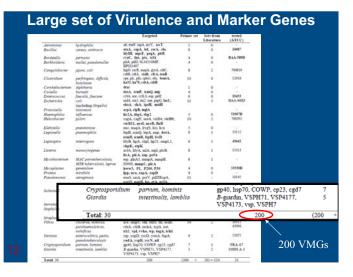

TEM images of dye-doped silica NPs. Particle size is about 55 nm (Yang et al., Submitted, 2007)

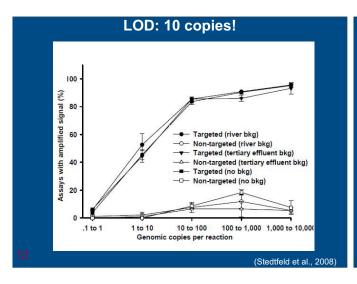
Growth curve by plate count, real time PCR, absorbance and dye doped NP assay

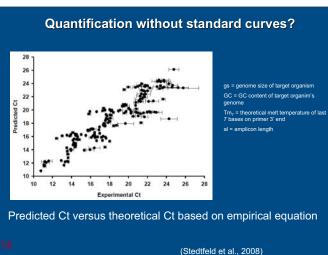

Contact the presenters

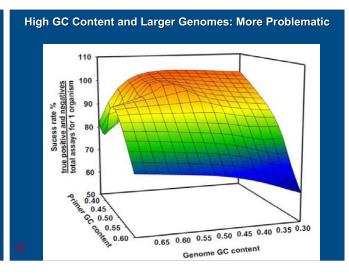

Time taken to determine the increase in growth by various methods

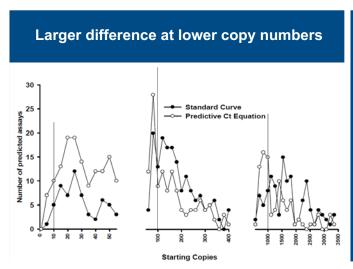

Contact the presenters

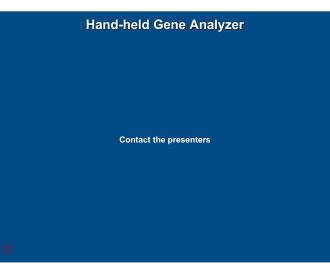


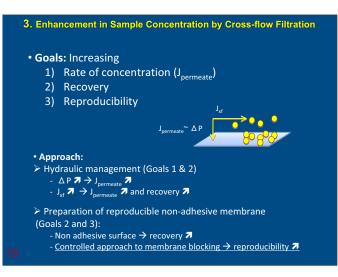




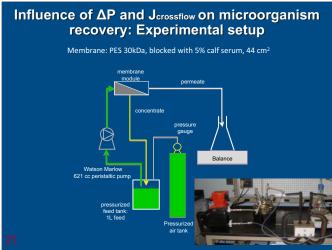


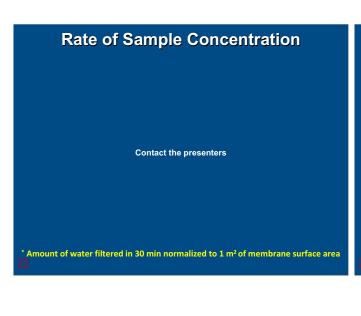


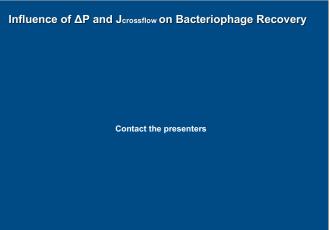


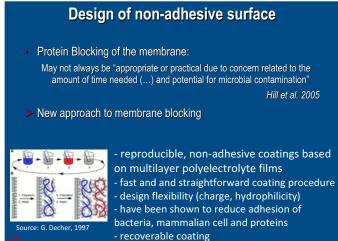


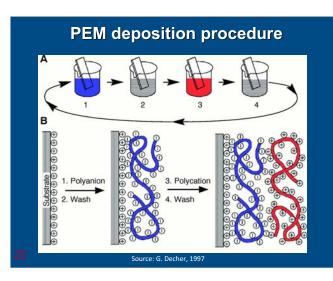


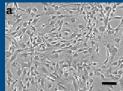


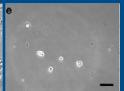








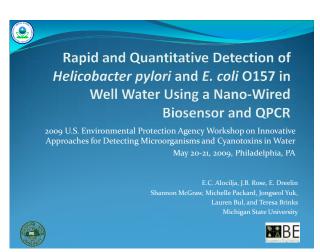


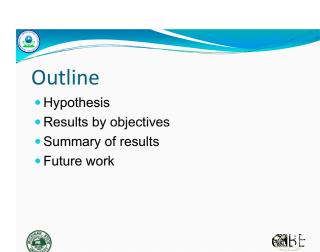


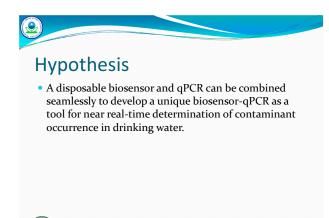
• Fibroblast adhesion before and after deposition of PEM (PAA/PAAm)

Yang et al. 2003

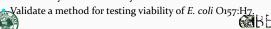
- Some polyelectrolytes inhibit phage infectivity of bacteria (plaque assay cannot be used)
- Epifluorescence and PCR are being evaluated as alternative methods of quantifying viruses




Patel et al. 2007


Summary

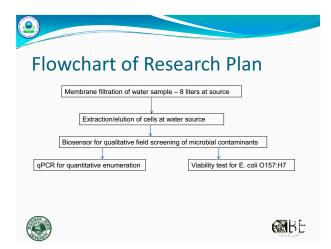
- 1. NP-based assay faster but expect to be busy
- 2. On-chip PCR: efficient screening tool, for samples that will result in 10 copies
- Sample concentration speed can be considerably improved with higher pressure (8 fold to 150 L/30 min-m²)
- 4. Improvements in blocking the filters: ongoing

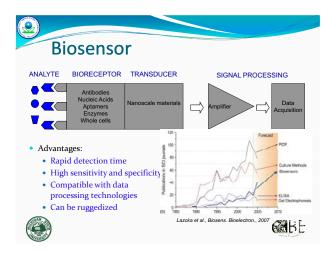


BBE

Objectives

- Develop a protocol for processing water samples for the biosensor and qPCR.
- Assess the performance of the biosensor and qPCR for sensitivity, specificity, recovery, and false positives/negatives of detection and enumeration for *E. coli* O157:H7 and *H. pylori* in groundwater samples from the field.
- Develop a method for detecting and enumerating E. coli
 O157:H7 and H. pylori by qPCR using bacteria isolated and
 screened by the biosensor system.

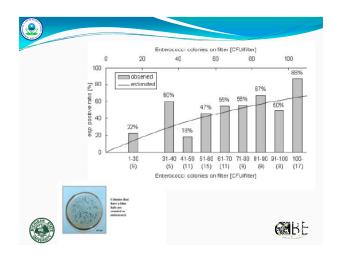


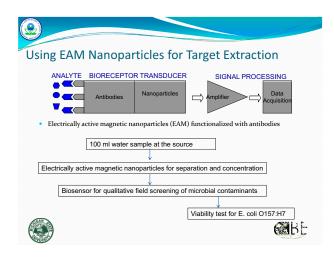

Highlight of Results

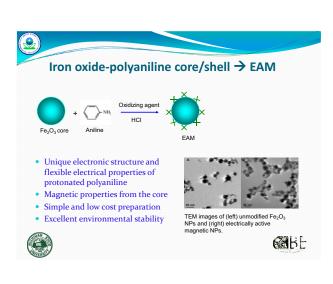
- Developed a novel target extraction system using an electrically active magnetic nanoparticles.
- Developed a protocol for use of automated DNA extraction and evaluated it in difficult samples.
- Developed a data base on CFU vs qPCR units for E.coli and Enterococci, and will be adding in the data from each sample for the 0157.
- E. coli O157:H7 biosensor has been tested in pure and seeded water samples.
- Viability test has been developed; sensitivity and specificity were evaluated.

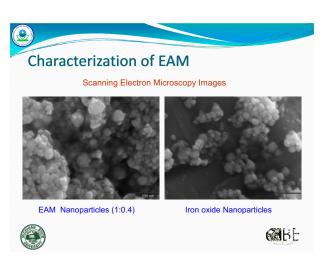
Real-Time Quantitative PCR (qPCR)

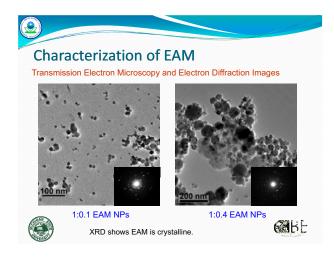
- · Detects PCR product fluorescently in each well plate.
- · Fast PCR screening without gels.
- · Quantifies amount of PCR product at each cycle.
- Detects presence or quantify fraction of sample made up by particular species using species specific primers.
- •Uses threshold detection for relative abundance.

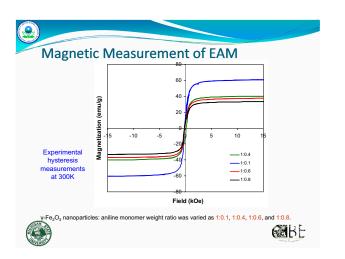


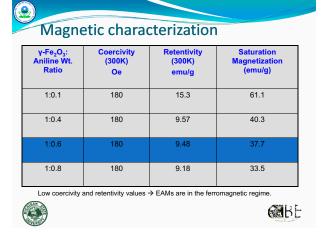

Results By Objectives

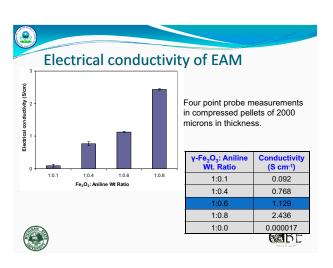

- Develop a protocol for processing water samples for the biosensor and qPCR.
- Assess the performance of the biosensor and qPCR for sensitivity, specificity, recovery, and false positives/negatives of detection and enumeration for *E. coli* O157:H7 and *H. pylori* in groundwater samples from the field.
- Develop a method for detecting and enumerating E. coli
 O157:H7 and H. pylori by qPCR using bacteria isolated and
 screened by the biosensor system.

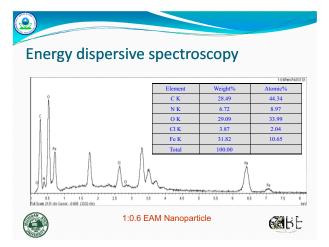


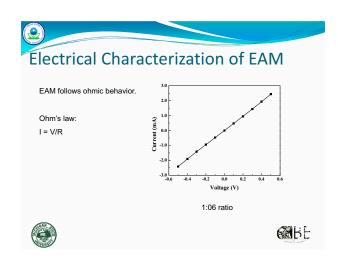


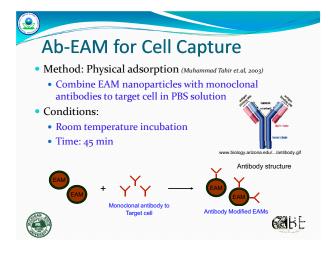


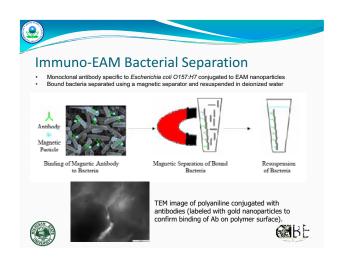


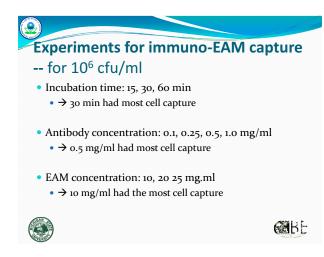












• Cell capture was confirmed by plating:

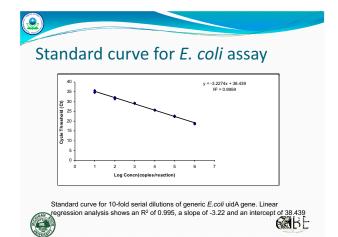
Solution	Count of Captured Cells	Cell Count in Original Culture
10-5 dilution of pure culture (104 CFU/ml)	10,880 CFU/ml (10 ⁴ CFU/ml)	1.088 x 10 ⁹ CFU/ml
10-6 dilution, cell conjugate (10 ² CFU/ml)	10 CFU/ml (10 ¹ CFU/ml)	4.0 x 10 ⁸ CFU/ml

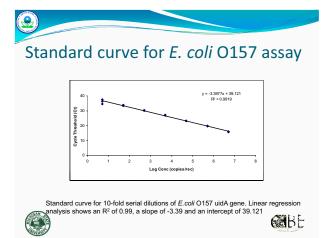
 Observation: Capture process decreased cell count by less than a factor of 10.

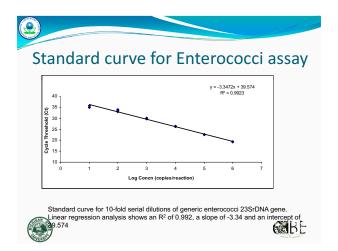


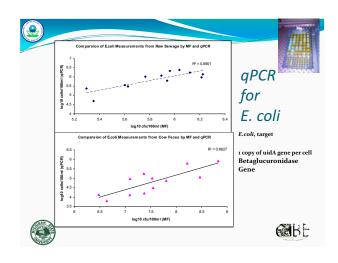
Results By Objectives

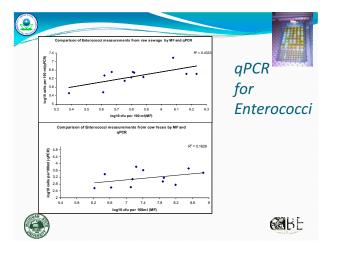
- Develop a protocol for processing water samples for the biosensor and QPCR.
- Assess the performance of the biosensor and qPCR for sensitivity, specificity, recovery, and false positives/negatives of detection and enumeration for E. coli O157:H7 and H. pylori in groundwater samples from the field.
 - qPCR
- Develop a method for detecting and enumerating E. coli
 O157:H7 and H. pylori by QPCR using bacteria isolated and
 screened by the biosensor system.

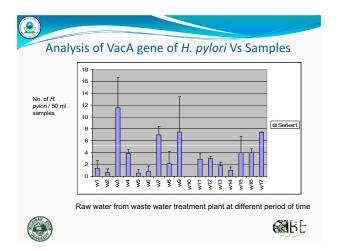



Primers and probes for the qPCR assays


Organisms	Target gene	Primer/Probe	Reference
E.coli O157	uidA	5'CAATGGTGATGTCAGCGTT3' 5'ACACTCTGTCCGGCTTTTG3' HEX- CAACTGGACAAGGGGCACCA GC-BBQ	Developed by this study
E.coli	uidA	5'CAATGGTGATGTCAGCGTT3' 5'ACACTCTGTCCGGCTTTTG3' 6FAM- TTGCAACTGGACAAGGCACCA GC-BBQ	Developed by this study
Enterococci	23SrDNA	AGA AAT TCC AAA CGA ACT TG CAG TGC TCT ACC TCC ATC ATT FAMID-TGG TTC TCT CCG AAA TAGCTT TAG GGC TA-TAMRAC	Frahm et al, 2002

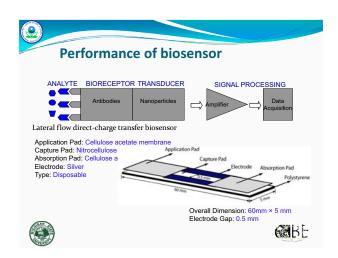


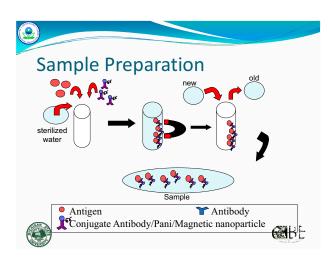

BBE

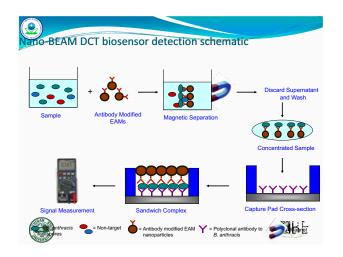


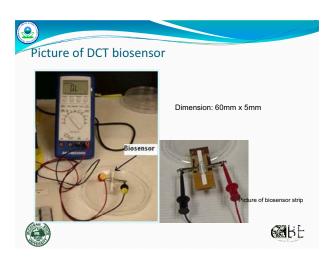
Key Results

- Rapid qPCR methods have been developed for two fecal indicators E.coli and Enterococci and two pathogens Helicobacter and E.coli 0157H7.
- qPCR has been used to detect Helicobacter in sewage and detects what is likely the viable non-cultivable state (previous report and publication).
- qPCR is highly correlated to *E.coli* and Enterococci in Sewage but this same assay does not detect all of the species present in manure, either due to interferences or more likely due to specificity of the primers.

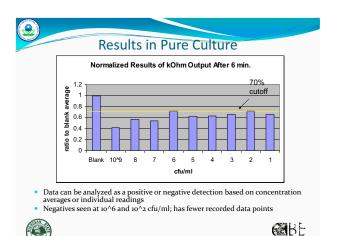


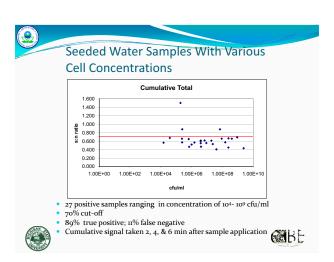


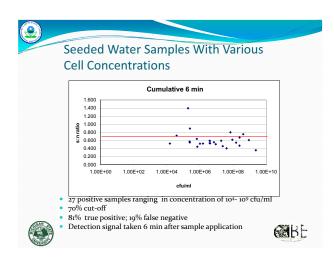

Results By Objectives


- Develop a protocol for processing water samples for the biosensor and OPCR.
- Assess the performance of the biosensor and qPCR for sensitivity, specificity, recovery, and false positives/negatives of detection and enumeration for E. coli 0157:H7 and H. pylori in groundwater samples from the field.
 - Biosensor
- Develop a method for detecting and enumerating *E. coli* O157:H7 and *H. pylori* by QPCR using bacteria isolated and screened by the biosensor system.

Validate a method for testing viability of *E. coli* O157:H7.




Antibodies and Bacterial Isolates

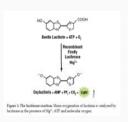

- Antibodies
 - Purified mouse monoclonal anti-E.coli O157:H7 (OEM Concepts)
 - Purified goat polyclonal anti-E.coli O157:H7 (Kirkegaard & Perry Laboratories Inc.)
- Bacterial Isolate
 - E.coli O157:H7 C3000

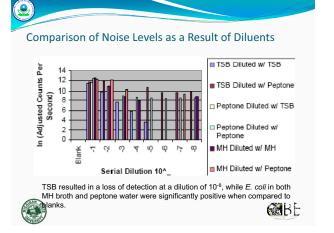


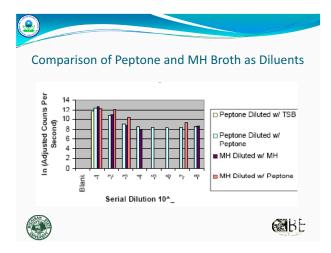
Key Results

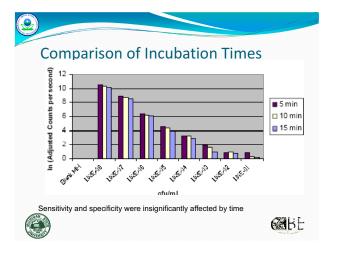
- Sensitivity studies need to be continued.
- Can not currently quantify the concentration of bacteria in the sample because of observed hook effect due to cell crowding and variances between testing.
- The overall time interval from obtaining a sample to readout with the biosensor is < 20 minutes.
- Biosensor design and parameters need to be modified/improved to minimize false negative.

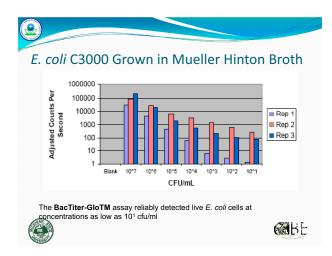
Results By Objectives

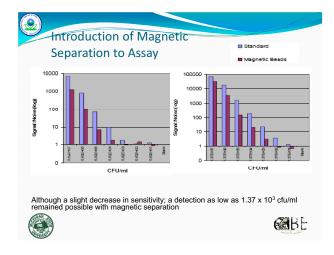

- Develop a protocol for processing water samples for the biosensor and QPCR.
- Assess the performance of the biosensor and qPCR for sensitivity, specificity, recovery, and false positives/negatives of detection and enumeration for *E. coli* O157:H7 and *H. pylori* in groundwater samples from the field.
- Develop a method for detecting and enumerating *E. coli* O157:H7 and *H. pylori* by QPCR using bacteria isolated and screened by the biosensor system.
- Validate a method for testing viability of *E. coli* O157:H7.

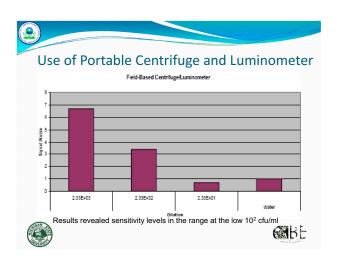


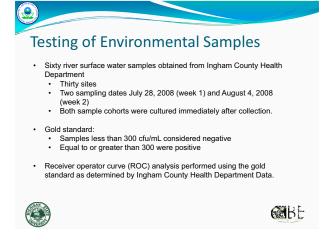


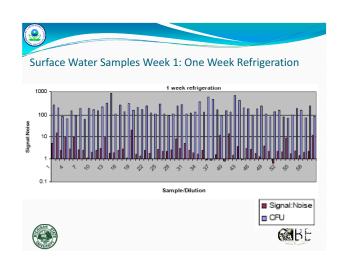

- Concentration of E. coli C3000 (ATCC #15597) by centrifugation
- #1559// by centificagation
- Antibody separation
 - Goat-derived, polyclonal, biotinylated antibody (Meridian Life Sciences, Cat# B65109B)
 - Magna-Sphere streptavidin-coated magnetic beads (Promega Cat # Z5481),
- The BacTiterTM Microbial Cell Viability Assay (Promega Cat#C8230)
- Greater numbers of positive results compared to the standard methods
 Likely due low specificity

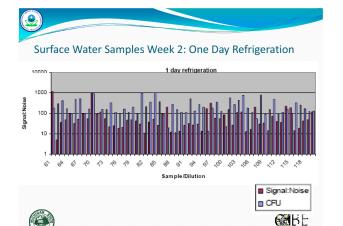


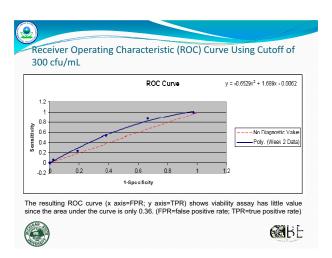


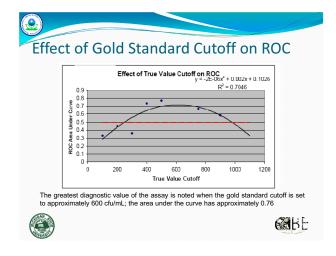


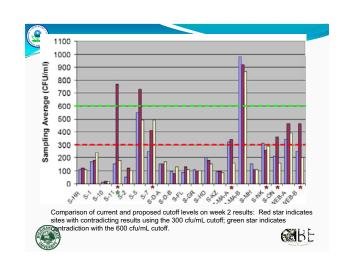


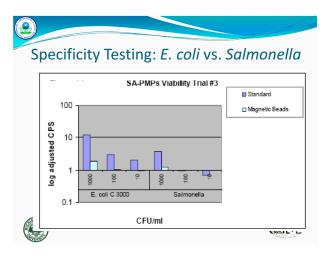


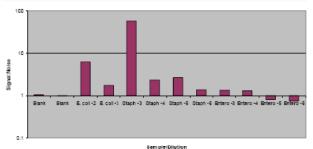


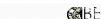












Specificity Testing: E. coli vs. Salmonella, S. Aureus, and Enterococcus

Alternate Approach to Viability Test

A: Chemical-grade ATP:

Glucose + ATP Glucose 6-Phosphate + ADP + H*
(Detectable change amperage increase)

B: Hexokinase-bound E. coli O157:H7:

Glucose + ATP Glucose 6-Phosphate + ADP + H*
(Detectable change amperage increase)

C: Negative Controls

Output: Papers and Thesis

- Peer-reviewed Publications:
 - Yuk, J.S., Jin, J.H., Alocilja, E.C., and Rose, J.B. 2009. Performance enhancement of polyaniline-based polymeric wire biosensor. Riosensors and Bioelectronics Journal 24(5): 1348-1352 (available online at http://dx.doi.org/10.1016/j.bios.2008.07.079 in 2008).
 - Yuk, J.S. and Alocilja, E.C. 2009. Electrical characterization of magnetic polyaniline and bio-conjugated magnetic as molecular biowires. Sensors & Actuators: B. Chemical (in review).
- Thesis.
- Arun Nayak, MS 2008; Stability And Quantitative Surveillance Of Helicobacter pylori And Campylobacter jejuni In Environmental Waters By Real Time qPCR.

Output: Presentations

- Presentations
 - Nayak, A., Helicobacter pylori in sewage Presented in 106th General Meeting of American Society for Microbiology. Orlando, FL. May 22-26.2006.
 - Nayak, A., Helicobacter pylori qPCR Presented in 1st Annual Graduate Student Research Symposium Department of F&W, Michigan State University. East Lansing, MI. February 14th, 2006.
 - Nayak, A. Helicobacter pylori VBNC in sewage Presented in The 13th International Symposium on Health Related Water Microbiology Conference at Swansea, UK. Sept 4-9, 2005
 - Sangeetha Srinivasan, Shannon McGraw, Lauren Bull, Evangelyn Alocilja, Erin Dreelin & Joan B.
 Rose. Detection of waterborne pathogens using Real Time PCR and Biosensor methods.
 Presentation for the USEPA workshop on Innovative approaches for Detection of Microorganisms in water. Cincinnati, OH, June 18-20, 2007.
 - Sangeetha Srinivasan, Marc P. Verhougstreate & Joan B. Rose. Evaluation of Bacteroides, a new alternative indicator for fecal contamination. MI-ASM Branch Spring 2008 meeting at Central Michigan University, April 11–12, 2008.
 - Sangeetha Srinivasan & Joan B. Rose. New microbial source tracking methods for the water industry. Michigan Section, AWWA 70th Annual Conference. Kalamazoo, Michigan, September 9-12, 2008

Future Work

- qPCR
 - Prepare a publication on the qPCR indicator studies.
 - Characterize the occurrence of 0157 in sewage and manure along with E.coli and Enterococci as indicators with qPCR.
- Biosenso
- Do test with seeded environmental water samples; do test using environmental water samples.
- Test alterative design using SPCE biosensor.
- Viability assay:
- Continue investigation into the replacement of currently employed biotinylated antibody with a
 more effective method of isolating E. coli from other bacterial contaminants prior to viability
 testing, in order to decrease cross-reactivity of developed assay.
- Optimize the sensitivity and specificity determination of a strain-specific assay to detect viable E. coli O157:H7 in surface water samples.
- Implement alternative design using ATP-hexokinase system.
- Biosensor-qPCR system
 - Integrate biosensor-qPCR-viability assays into a seamless system.

Acknowledgment

- Funding sources for outputs of this project:
 - · US Environmental Protection Agency
 - Department of Homeland Security through the National Center for Food Protection and Defense
 - · Michigan Department of Environmental Quality
- · Graduate students working on this project:
- Shannon McGraw, Michelle Packard, Sangeetha Srinivasan
- Undergraduate students working on this project:
- · Lauren Bul, Teresa Brinks
- Postdoc working on this project:
 - Jongseol Yuk
- Other students who are members of the Alocilja Research Group

Assessment of Microbial Pathogens in Drinking Water using Molecular Methods Coupled with Solid Phase Cytometry

Barry H. Pyle, Associate Research Professor
Department of Microbiology, Montana State University
U.S. Environmental Protection Agency Workshop on
Innovative Approaches for Detecting Microorganisms and
Cyanotoxins in Water, May 20-21 2009
Philadelphia, PA

COLLABORATORS

Biddeford, ME

Anne Camper
Susan Broadaway
Al Parker
Jo-An Lindstrom
Montana State University
Bozeman, MT
Tim Ford

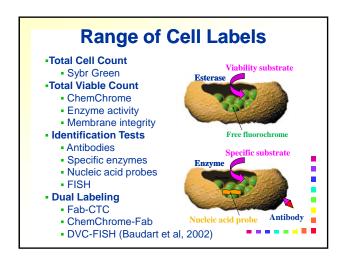
University of New England

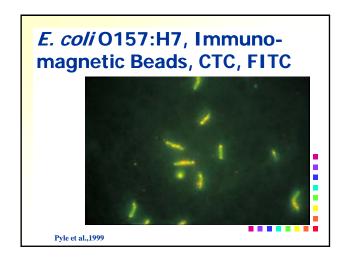
Overall Objective

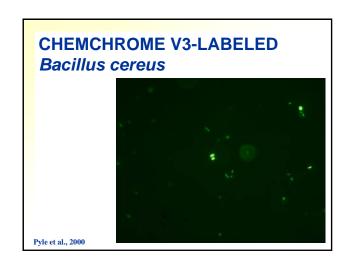
 To develop and evaluate innovative approaches for quantitative assessment of pathogens

Target Microbial Pathogens

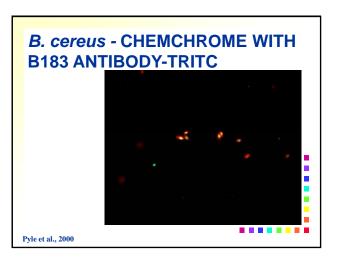
- Escherichia coli O157:H7
- Helicobacter pylori
- Legionella pneumophila
- Mycobacterium avium
- Aeromonas hydrophila
- Giardia lamblia
- Cryptosporidium parvum

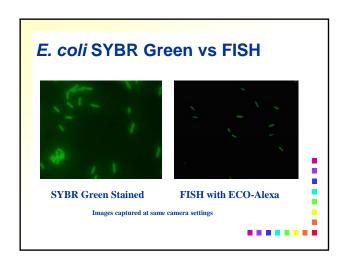

Procedures

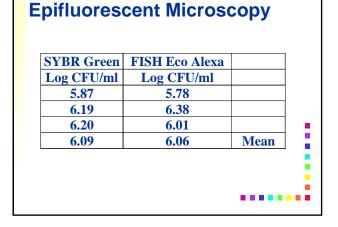

- Fluorescent in situ hybridization (FISH)
 - Enhance with tyramide amplification
 - Use polyamide nucleic acid (PNA) probes
- In situ nucleic acid amplification
 - Specific target genes inside individual cells (Hodson et al, 1995)
 - Improved methods, e.g. (Notomi et al, 2000; Maruyama et al, 2003 & 2005)
- Membrane filtration
- Solid Phase Laser Cytometry

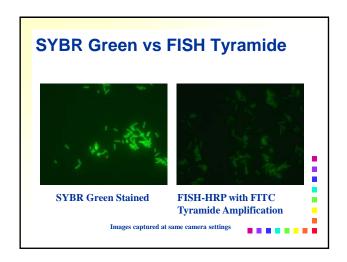

Solid phase laser cytometry


- Scan a 25 mm diameter membrane filter in 3-4 minutes
- Detect individual fluorescent particles
- Discriminate between cells & debris
- Locate particles on microscope
- Validate bacteria, eliminate other particles









Goal Performance Characteristics Detection of different target bacteria with specific probes Detection of low numbers of pathogens Includes VBNC bacteria

Single cell enumerationSensitivity – 1 cell per filterable volume

• Can include infectivity and/or virulence

Rapid – Results within 6-8 hours

· Viable or active cells

Scope of Project

- Drinking water and source waters
- Native American students at Little Big Horn College and Montana State University-Bozeman to participate

ACKNOWLEDGMENTS

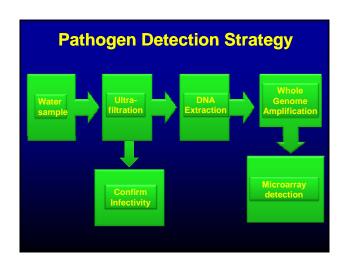
- U.S. Environmental Protection Agency Barbara Klieforth, Project Officer
- NIH Environmental Health Sciences
- NASA
- DoD U.S. Army
- AES-Chemunex, Inc.
- LigoCyte Pharmaceuticals, Inc., Bozeman
- Montana State University

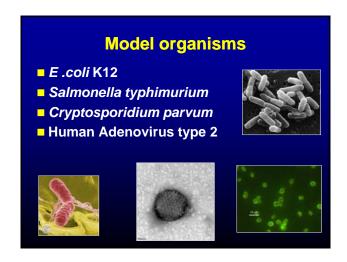

References

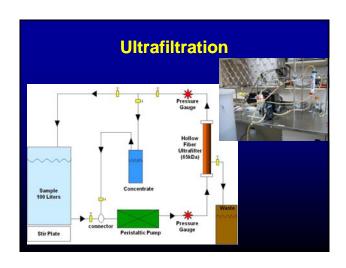
- Baudart, J., J. Coallier, P. Laurent, and M. Prevost. 2002. Rapid and sensitive enumeration of viable diluted cells of members of the family Enterobacteriaceae in freshwater and drinking water. Appl. Environ. Microbiol. 68:5057-5063.
- Broadaway, S.C., S.A. Barton, and B.H. Pyle. 2003. Rapid staining and enumeration small numbers of total bacteria in water by solid-phase laser cytometry. Appl. Environ. Microbiol. 69:4272-4273.
- Hodson, R. E., W. A. Dustman, R. P. Garg, and M. A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol. 61:4074-4082.
- Maruyama, F., T. Kenzaka, N. Yamaguchi, K. Tani, and M. Nasu. 2003. Detection of bacteria carrying the stx2 gene by in situ loopmediated isothermal amplification. Appl. Environ. Microbiol. 69:5023-5028

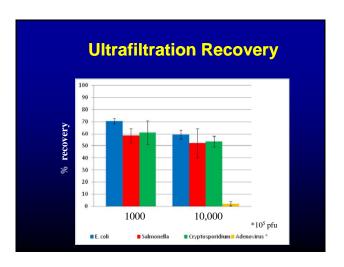
References (continued)

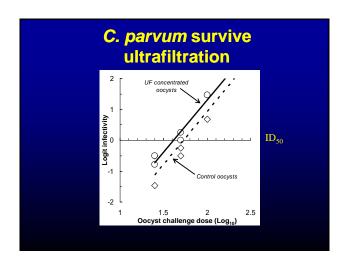
- Maruyama, F., T. Kenzaka, N. Yamaguchi, K. Tani, and M. Nasu. 2005. Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Appl. Environ. Microbiol. 71:7933-7940.
- Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28(12):i-vii
- Pyle, B.H., S.C. Broadaway, and G.A. McFeters. 1999. Sensitive detection of *Escherichia coli* O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl. Environ. Microbiol. 65:1966-1972.
- Pyle, B.H., S.C. Broadaway, J.T. Lisle, and G.A. McFeters. 2000. Improved detection of viable bacterial spores. Abstract Q-360, 100th Annual Meeting, American Society for Microbiology, Los Angeles, CA, May 21-25, 2000. (Poster). P. 624.

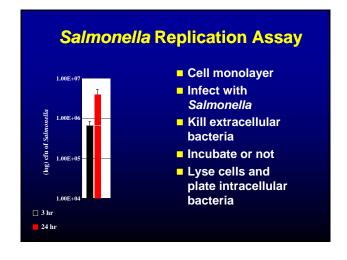


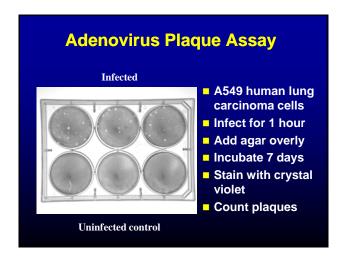

Metropolitan Water District of Southern California (MWD)

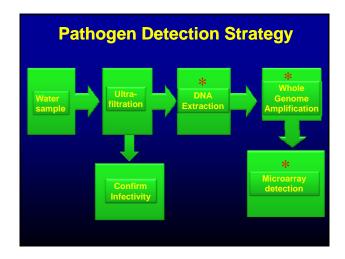

- Consortium of 26 cities and water districts
- Provide water for >18 million people in Southern California; 5200 square mile service area
- Delivers an average of 1.7 billion gallons of water daily

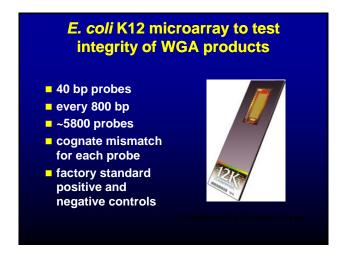


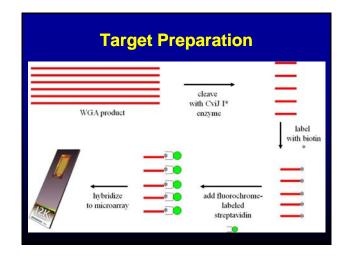


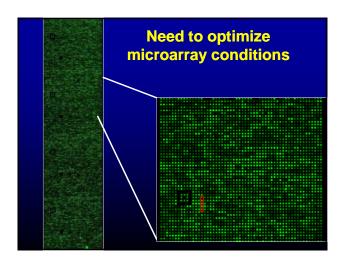






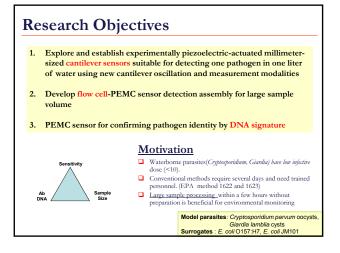






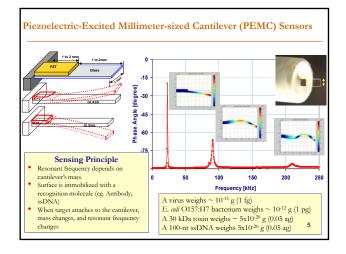
Kit	expected yield* (ug/mL)	actual yield** (ug/mL)
REPLI-g Ultrafast Mini (Qiagen)	350-500	357 644
Illustra Genomiphi V2 (GE Healthcare)	200-350	317 214
GenomePlex Complete (Sigma)	40-93	30 none detected
DOP-PCR (Roche)	not specified	9 5
(Roche)		5

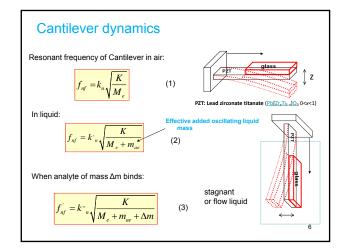
	WGA Results post-ultrafiltration							
Organism (10 ⁴ inoculum)	Extraction Kit	Mini WGA range (μg/ml)	• 10 ⁴ inoculum • 17 fg					
E. coli	Invitrogen forensic kit	0.13-0.35	DNA/bacterial cell					
Salmonella	Invitrogen forensic kit	0.634-4.53	• Starting material ~0.01					
Cryptosporidium	MoBio ultraclean soil kit	1.95-8.39	ng DNA/10,000 cells					
Adenovirus	Invitrogen Purelink Viral RNA/DNA kit	Not done yet	Scaling up using Midi kit					

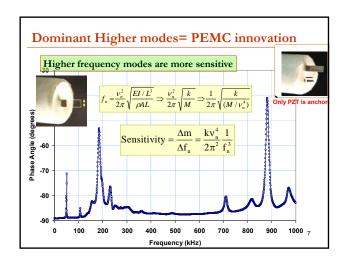

Summary of Progress Ultrafiltration recoveries for *E. coli*, Salmonella and Cryptosporidium are satisfactory Can use WGA to amplify genomic DNA recovered from ultrafiltration Infectivity confirmed for Cryptosporidium

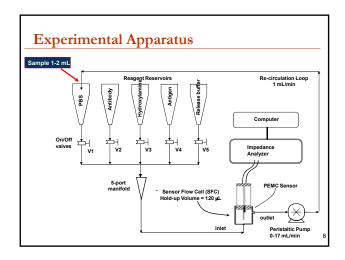
Future Directions

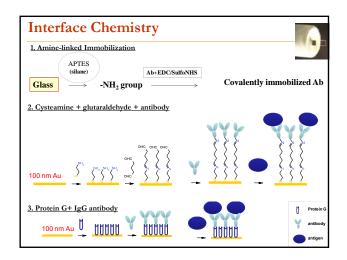
- Optimize UF for Adenovirus
- Optimize larger scale WGA
- Optimize microarray parameters
- Finish infectivity studies
- Design custom microarray

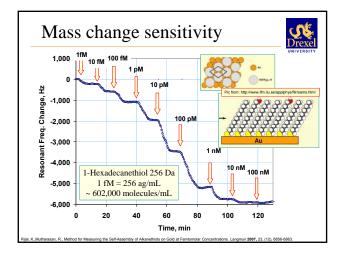


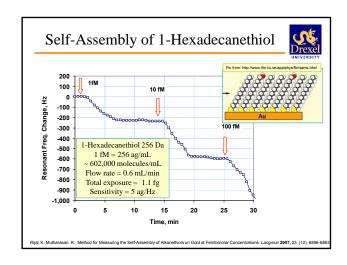

Progress

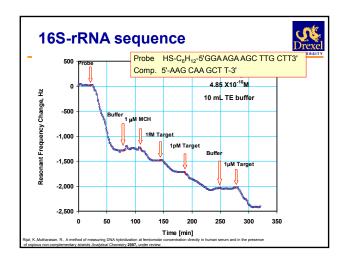

- 1. Sensitive mode established; flow cell (version 4 designed & tested) model experiments with *E. coli* O157:H7, Crypto and Giardia show detection limit $\sim 10-50$
- Successful 1 liter samples completed using modified flow cell; 1 cell/mL completed
- 3. DNA-based detection of $E.\ coli\, O157:H7\ (stx2\, gene)$ at $\sim 700\ cells$ without amplification demonstrated in buffer

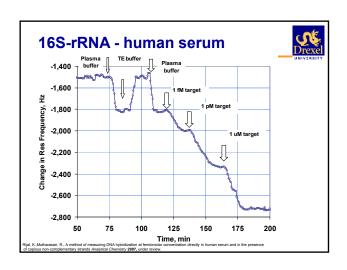

In Progress

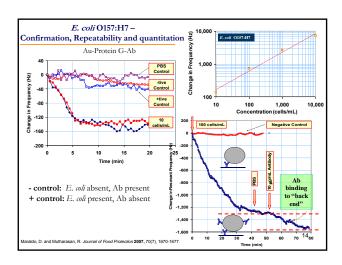

- 1. Version-5 flow cell design and fabrication; river water Crypto at 10 and 100 liters
- 2. DNA-based detection of Crypto and Giardia

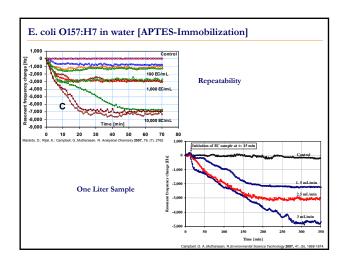


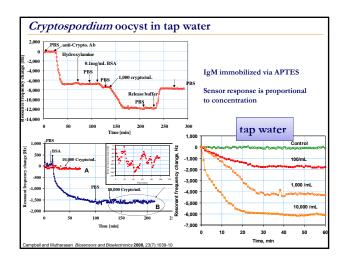


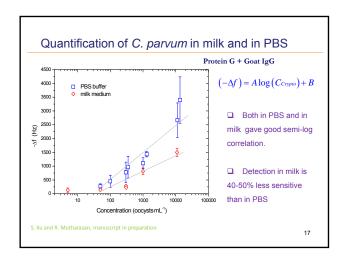


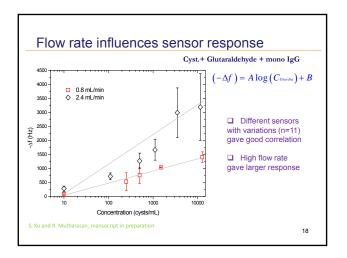


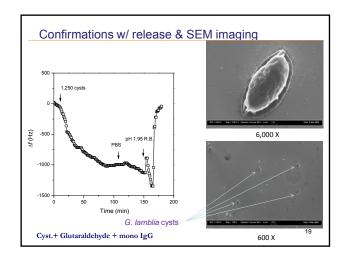


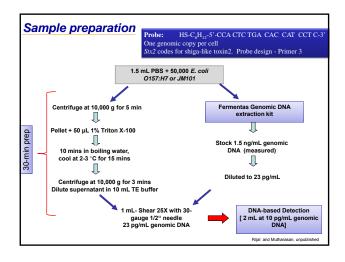


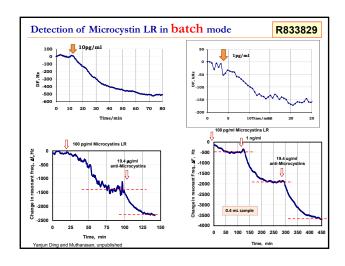












Conclusions

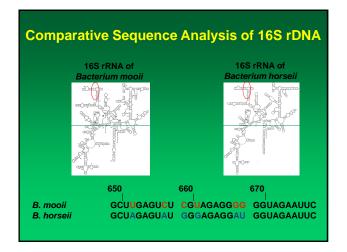
- Cantilever sensor mass change sensitivity = 1 ag/Hz
- E. coli in buffer Detection limit 10 (in theory one cell)
- One liter sample detection shown
- Crypto and Giardia in buffer & proteinous environment – ~ 10
- Stx2-gene based detection ~700 cell detection.
- 100 appears to be feasible

MST research Jorge Santo Domingo US EPA NRMRL/WSWRD/MCCB Cincinnati, OH

Microbial Source Tracking or Fecal Microbial Forensics

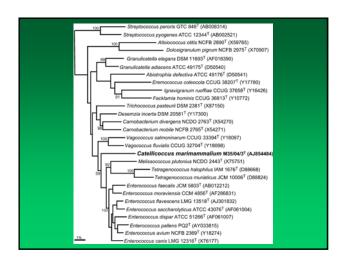
Use of detectable molecular variations between related fecal microbial strains to infer the origin of pollution sources in a fecally contaminated watershed

(or food supply).



Host-Specific PCR Assays

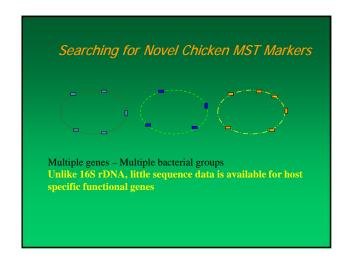
- Culture-independent
- Library-independent
- Rapid detection
- Sensitive
- Defined target
- Automated analysis
- Potential for multiple assays
- Potential for really cheap assays

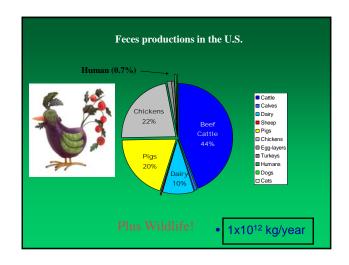


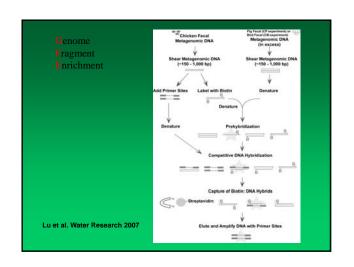
Steps for assay development

- DNA extract from feces
- PCR amplification w/ 16 rDNA primers
- Cloning, sequencing, blast, and phylogenetic analysis
- Rare groups used for assay development

Development of gull assays

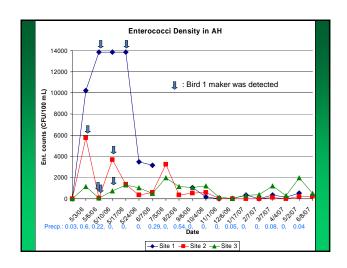

lass or group		
(% clones of total)	Genus	No. of clones
Actinobacteria (6.4)	Corynebacterium	
Bacilli (37.2)	Catellicoccus	74/105
Bacteroidetes (1.1)	Bacteroidetes	
Clostridia (17.31)	Clostridium	44/49
Fusobacteria (0.7)	Cetobacterium	
Mollicutes (8.8)	Unknown genus	25
Alpha proteobacteria (6.7)	Paracoccus	
Beta proteobacteria (4.3)	Acidovorax	6/12
Gamma proteobacteria (11.3)	Acinetobacter	13/32
Delta proteobacteria (0.4)	Unknown genus	1/1
Epsilon proteobacteria (0.4)	Campylobacter	1/1
Planctomycetes (0.4)	planctomycete	1/1
Spirochaetes (1.1)	Leptospira	3/3
Cyanobacteria (0.4)	Synechococcus	1/1
Archaeon (0.4)	Unknown genus	1/1
Unknown Class (3.2)	Unknown genus	9/9





				Gull2	
Target	Sampling locations	Numbers of	PCR - No.		_l PCR
	locations	fecal samples	of positive samples	No. of positive samples	Average copy no. per ng DNA ± std dev
Larus delawarensis	GA	13	10	10	6117±12428
Larus atricilla	GA	20	10	12	905±1040
Larus atricilla	OH	3	3	3	414±496
Larus delawarensis	ОН	3	2	3	52±73
Larus delawarensis	wv	8	7	6	896±932
Larus atricilla	FL	7	5	5	216±171
Larus delawarensis	Ontario, Canada	4	4	4	93044±71792

Sampling locations	Sample type	Sample type Time of collection		No. of positive samples	
Grant Park Beach, WI (Lake Michigan)	Freshwater	September-October, 2007	8	8	
Maumee Bay, Oregon, OH (Lake Erie, OH)	Freshwater	October, 2007		3	
Toledo Botanical Garden Pond (Toledo, OH)	Freshwater	October, 2007		0	
Northeast, OH	Chicken pit	2007	9	0	
Northeast, OH	Pig pit	2008	3	0	
Northeast, OH	Cow manure lagoon	2008	1	0	
Southern, GA	Fresh water	2007	9	0	
Bayfront Park Beach (Lake Ontario, Canada)	Freshwater	May-August, 2007	10	10	
Bluffers Park Beach (Lake Ontario, Canada)	Freshwater	May-August, 2007	10	10	
Sunnyside Beach (Lake Ontario, Canada)	Freshwater	May-August, 2007	10	10	
Doheny State Beach Pond (Dana Point, CA)	Freshwater	June-July, 2007	7	7	



Next steps

- Fragments are cloned and sequenced
- Sequences are classified by function and potential bacterial host
- Sequences associated with host-microbial interactions are used to develop PCR assays
- Assays are tested for host-specificity, hostdistribution, and detection limits (both in fecal sources and water samples)

Clone#	Fragment Size/PCR product size (DNA bp)	Primer set and sequences (5'→3')	COG category	Top BLASTX hit organism	Expect values	Amino acid length of match for BLASTX alignment (% identity)	Primer specifici
CB-R2-10	326/306	CCATCCACAGCACGTCGTA AGATCTTCATCCAGTACGGCA	Cellular processes (chaperones)	B. fragilis	4E-27	108 (50%)	Chicken & Goa
CB-82-27	614/607	CGAAGCGGAGAAGAACAAGA GTTCCGCAACGTAGAGGAAA	Metabolism (Inorganicion)	8 thetoisteemicron 25		205 (45%)	Chicken, goat & sheep
CB-R2-28	344/327	GGCAAGCCTCAATCGCAT GTTCTGGTCGTTGGGCTGA	Cellular processes (Signal transduction)			115 (61%)	Chicken & shee
	418/261	CTCCAGGATTTCGTGGGA AAGGAGCAGCTGACGGCA	Information storage and processing	Clostridium thermocellum 5E-		115 (52%)	Chicken, pigeon Sheep
CB-R2-42	627/265	GACGAGATCTATATTTGCCTCA CGGAGCATATCCTACGATCA	General function prediction only	Desulfitobacterium haftiense	1E-03	93 (33%)	Chicken
CB-R2-80	589/287	CGTGAATTTCCGCTACGA CCTCTTCCTTGCGTCCCA	Cellular processes (wall/membrane)	B. fragilis	1E-25	125 (45%)	Chicken
CP1-1	623/281	GGCAGGCATCAAGTCAACA TGGCAAAAGCAACTGTCATGGCA	Cellular processes (cell division)	C. tetoni	C totani 3E-16		Chicken & other b
CP-1-10	383/350	AGGAGCATTTGTCGCCCTA GGTAAAGCTGCCCGGTAATA	Cellular processes (defense)	9E-31 & fragilis		96 (88%)	Chicken
CP1-24	549/379	TACCCGCAACGGGGAGAA CCGATGATACGCTTTCCCAA	Metabolism (Inorganicion)	B. fragilis	3E-13	138 (33%)	Chicken
CP1-25	575/445	CTGGAGATCATCGTTGACAGA TAGGCTCAAGCAGTACCGGA	Information storage and processing	C perfringens str. 4E-58		165 (65%)	Chicken & turks
CP1-26	544/442	CCTGTCGTAAAACCCGGGG TCTTCGATTTTCCCTGTTTCA	Metabolism (Carbohydrata)	Ø. thetalatacmicron	3E-37	162 (44%)	Chicken
CP1-40	438/244	TATTTCTGGGTGCGGTTGTA CTGACCGGAATGACTCCCA	General function prediction	E thetolotocmicron	6E-6	114 (30%)	Chicken

Lessons learned

- Detection limits can vary dramatically per fecal sample, host, water sample
- Host distribution can also vary considerably
- Preferential distribution and secondary habitats issues like E. coli
- Different markers for different sources of the same fecal sources
- Combination of assays best approach to enhance confidence levels

Lessons learned

- The more (markers) the merrier; you never know which marker will work
- Survival of the targeted population is rather important
- Feces might not always be the best starting point for assay development
- There is unknown bacterial groups that might be used for assay development
- Abundance of host-specific populations can vary

Regional projects

RARE Project – Evaluate MST assays in tropical inland waters

Regional Methods Program – Comparison of MST and PST assays

Acknowledgements

USEPA Computational Toxicology Grants USEPA WSWRD

Jingrang Lu – NRC Award Regina Lamendella, Daniel Oerther – UC Rod Mackie, Tony Yanarell – UIUC George DiGiovanni – UT El Paso Stephen Hill, Tom Edge – Environment Canada

Rapid Concentration, Detection, and Quantification of Pathogens in Drinking Water

Zhiqiang Hu, Department of Civil and Environmental Engineering Lela K. Riley, Department of Veterinary Pathology Mengshi Lin, Department of Food Systems & Bioengineering University of Missouri, Columbia MO 65211

Part I. Lanthanum-Based Concentration and Detection

Introduction

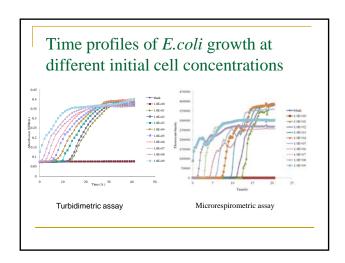
- Traditional assays enumerate microbes by measuring the turbidity of the organisms.
- Oxygen-based microrespirometry, however, can enumerate the live microbes by measuring oxygen consumption and determine microbial activities at the same time.
- Lanthanum chloride was used to concentrate the microbes in water before they were detected and quantified by microrespirometry.

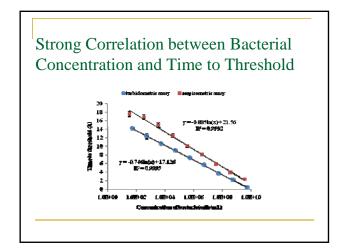
Outline

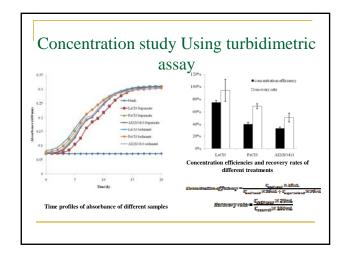
- Lanthanum-Based Concentration and Microrespirometric Detection of Microbes in Water
 - ☐ Turbidity-based and Fluorescence-based microrespirometry to enumerate microbes and determine microbial activity in water
 - □ Lanthanum-based microbial concentration
- Rapid detection and quantification of water-borne pathogens by SERS coupled with nanosubstrates

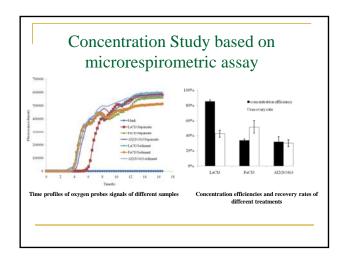
Introduction

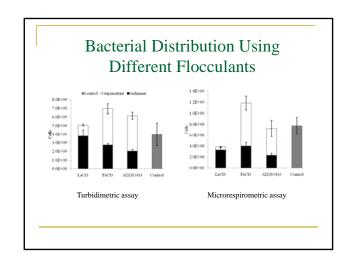
- Rapid detection of potential pathogens in water is crucial to drinking water supplies.
 - The numbers of microorganisms in water samples are often too low to be detected.
- Coagulation/flocculation coupled with filtration is an attractive method for concentration.
- LaCl₃ is a flocculant that can concentrate microbes by strong electrostatic interaction.
 - Compared with traditional flocculants (e.g., alum and ferric salts),
 LaCl₃ only hydrolyzes slightly in the water so that it minimize the impact on microbial properties.

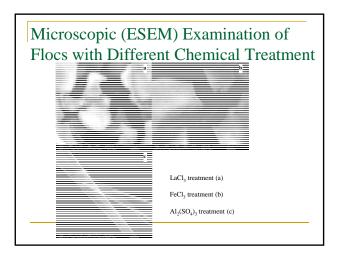

Materials and Methods


- Bacterial Strain used: E. coli (ATCC 47076)
- \blacksquare Flocculants/Coagulants: LaCl $_3$, FeCl $_3$ and $Al_2(SO_4)_3$ (final concentrations = 0.2 mM).
- Concentration procedures
 - Mixed at 200 rpm for 1 min, followed by slowly mixing at 30 rpm for 20 min
 - The samples were allowed to settle for 1 hour.
 - The supernatant fluids (75mL) were carefully removed without disturbing the flocs



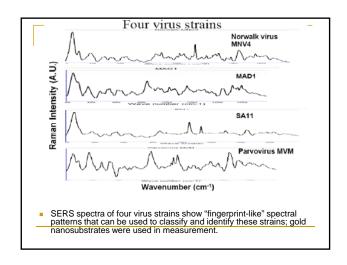


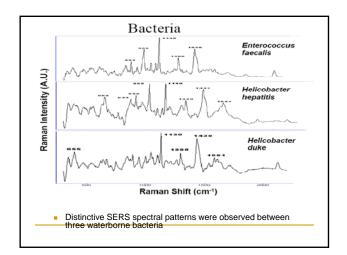

Microrespirometric Detection ■ Composition in microwells □ For every flocculant treatment, aliquots (20 µL) of supernatant or sediment samples were taken and added to the microplate wells followed by the addition of 180µL BBL medium. ■ Turbidimetric assay □ The microtiter plate was read at 600 nm. ■ Microrespirometric dectection □ Oxygen probe and mineral oil were added. □ Time-resolved fluorescence measurements were recorded with 340 nm excitation and 642 nm emission Microrespirometric dectection □ Oxygen probe and mineral oil were added. □ Time-resolved fluorescence measurements were recorded with 340 nm excitation and 642 nm emission

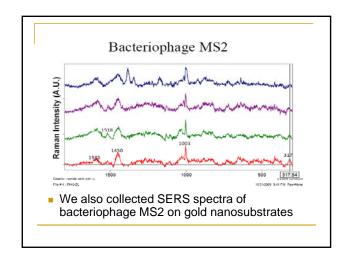


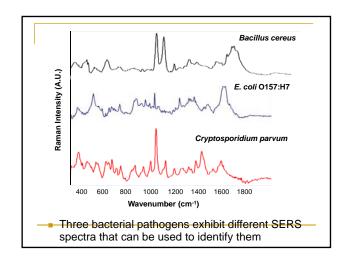
Effect of flocculants (LaCl₃, FeCl₃ and Al₂(SO₄)₃) on E. coli bacterial growth

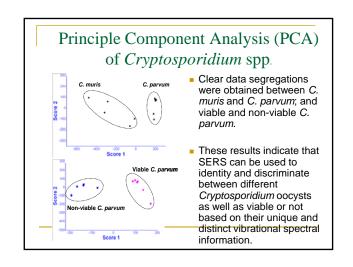
Summary

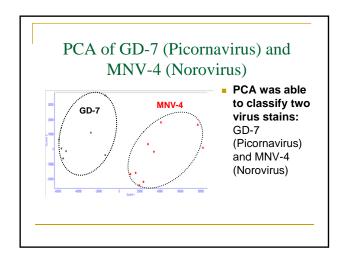

Compared with traditional flocculants, LaCl₃ has the highest relative concentration and recovery efficiencies. The lanthanum-based method coupled with ultrafiltration provides a promising pathogen concentration method for water utilities. Part II. Rapid detection and quantification of water-borne pathogens by SERS coupled with nanosubstrates

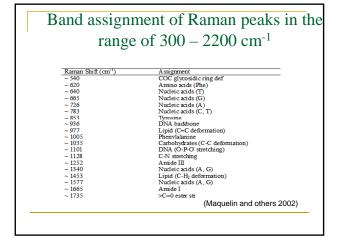

Surface enhanced Raman spectroscopy (SERS) When analyte molecules are adsorbed on metal surface with nanoscale roughness, Raman signal can be tremendously enhanced due to spatially localized surface plasmon resonance (SPR) from the "hot spots" where huge local enhancements of electromagnetic field are obtained. The enhancement factor can be more than 10⁶. Limit of detection can reach the parts per billion (ppb) level or possibly a single molecule (www.innovations-report.com; D3 Technology)

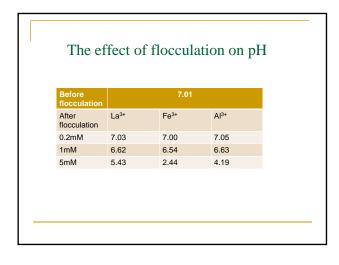



Objective To develop and validate SERS-based method for pathogen detection and quantification. Several species representing the major categories of pathogens in drinking water were chosen for SERS testing: Enterococcus faecalis Helicobacter pylori Human adenovirus Calicivirus Encephalitozoon cuniculi


E. coli O157:H7Cryptosporidium parvum






Summary

SERS coupled with nanosubstrates and statistical tools shows great potential to rapidly detect and identify different water-borne pathogens.

Acknowledgements

Funded by EPA STAR Program (#83384001)

Simultaneous Concentration and Realtime Detection of Multiple Classes of Microbial Pathogens from Drinking Water

Prof. Mark D. Sobsey

Department of Environmental Sciences and Engineering Gillings School of Global Public Health University of North Carolina Chapel Hill, NC 27599-7341

Objective 1

- Refine and validate new and improved, rapid hollow fiber ultrafiltration methods to concentrate viruses and cellular pathogens (bacteria and protozoan parasites) from waters of variable quality
 - Particles
 - Dissolved organic matter
- Compare to existing virus concentration methods (1MDS VIRADEL)

Objective 2

- Fabricate (or identify) and evaluate improved and cost-effective electropositive filters to rapidly and efficiently concentrate enteric viruses from waters of different quality by adsorption to and elution
 - Nanoceram cartridge filter (Argonide)
- Compare to existing virus concentration methods (1MDS VIRADEL)

Objective 3

- Improve and evaluate post primary concentration sample preparation techniques:
 - Rapid PEG precipitation
 - Post PEG precipitation treatments to improve virus detection by quantitative real-time (RT-)PCR
 - Large volume nucleic acid extraction
- · Further concentrate viruses
- · Remove inhibitors
- Facilitate efficient, specific, and sensitive real-time, molecular detection of viral nucleic acids
 - Human adenoviruses
 - Human enteroviruses
 - Human noroviruses

Objective 4

- Improve and optimize direct detection of viral RNA/DNA by real-time molecular methods for rapid and efficient detection of low numbers of target viruses
 - Sample volume per (RT-)PCR reaction
 - Additives to (RY-)PCR mixtures

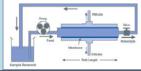
Objective 5

 develop complete protocols of the methods and provide them to a select number of other water virology laboratories to conduct a collaborative (round-robin) test of the methods that characterizes their performance; and

Concentration of Adenoviruses, Noroviruses and Echoviruses from Water

- · Primary concentration
 - Recirulating flow hollow fiber ultrafiltration
 - · 2 brands of filters
 - · Modified endcaps to increase flow rate/flux
 - Alternative beef extract elution solutions
 - Performance in waters of different quality (source and treated)
 - Once-through, gravity-flow hollow fiber ultrafiltration
 - Nanoceram electropositive adsorbent filter
 - Nano alumina (AlOOH) fibers
 - · Virus concentration from seawater
- · Secondary concentration
 - Polyethylene glycol precipitation
 - · Effect of PEG and NaCl concentrations

Recirculating HFUF Methods and Materials

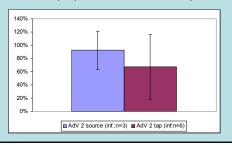

Hollow-fiber ultrafilters (HFUF):

- Fresenius F80A
 - (Fresenius Medical Care, Lexington, MA)
- Hemocor HPH
 - (Minntech Corporation, Minneapolis, MN)

HFUF flow modifications:

- Modified end caps with larger diameter openings
- Increased flux for more rapid sample processing

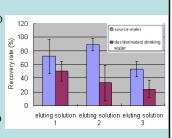
Recirculating HFUF Methods and Materials


- Test water: ≥10-liter volumes of untreated source and de-chlorinated finished waters (SFPUC: San Francisco Public Utility Commission)
- HFUF units: ca. 75,000 MWCO, designed for kidney dialysis
- Peristaltic (flexible tubing roller) pump to re-circulate water through the unit
- As water re-circulates, permeate is separated from retained particles, concentrating particles, including microorganisms, to <300 ml volume

Recovery of Adenovirus 2

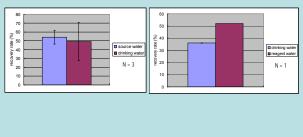
- Hollow Fiber Ultrafiltration
 - Virus assay by cell culture infectivity

HFUF Recovery of Adenovirus 41


• Eluting solution comparison for Ad41 recovery from HFUF primary concentrates

Eluting Solution 1 (Standard)
1 L Phosphate-buffered Saline (PBS)
10 g laureth-12
50 µL antifoam-A

Eluting Solution 2
1 L PBS


1 L PBS 10 g laureth-12 1 g NaPP 50 µL antifoam-A Eluting Solution 3 1 L reagent water

Eluting Solution 3 1 L reagent water 52.7 g L-Arginine (A-5131) (0.25 M) 45.65g L-Lysine (L-5826) (0.25 M) 10 g laureth-12 50 μL antifoam-A

HFUF Recovery of Adenovirus 41

- Lower spike virus concentration (105/10L) (Left)
- Recovery from large volume (100L) (Right)

HFUF Recovery of Pathogenic Microbe Suite

		Source	Water	Drinking Water		
Organism	Spike Conc'n. (cfu,pfu/L)	Trials (N)	Average Recov. (%)	Trials (N)	Average Recov. (%)	
E. coli 0157	500	3	52±6	3	44±12	
Salmonella	500	3	85±13	3	117±27	
Aeromonas	500	3	11±3	3	7±5	
Echovirus-12	2000	3	49±45	3	ND	
Cryptosporidium	20	3	29±11	3	28±6	
Giardia	20	3	9±3	3	15±8	

Bacteria, Virus and Spore Recovery from Treated OWASA Water (10L) by Conventional & Modified Fresenius F200A HFUFs

Organism	Conventional			Modified			
	Flowrate (L/min)	Trials (N)	Average Recovery	Flowrate (L/min)	Trials (N)	Average Recovery (%)	
			(%)				
E. coli K011		6	112±36		13	60±21	
Coliphage MS-2	0.17±0.02	6	109±18	0.46±0.04	13	85±12	
Bacillus atrophaeus		5	71±19		13	57±13	

No Significant Difference by Mann Whitney Test for E. coli, coliphage MS-2 and Bacillus atrophaeus; p values of 0.0874, 0.5789, and 0.5663, respectively.

Flow rate was significantly greater for HFUFs with modified endcaps (Mann Whitney Test; p value <.0001)

Microbe Recovery from Water using Once-through Gravity HFUF

- Gravity flow HFUF, ca. 30 cm long, 2 cm diameter, 20 nm pore size filter
- 10 L volumes of dechlorinated drinking water
- Spike with high concentrations of E. coli K011 (bacterium), coliphage PRD-1 (indicator virus), and spores of Bacillus atrophius (protozoan surrogate)
- Filter by gravity flow (1 meter head) or with a peristaltic pump
- Recover test microbes from filter by backflushing with buffered elution solution
 - Used two successive flushes of ca. 250 mL each

Microbial Recoveries from 10L Volumes of Water by Once-through HFUF

- · Average recoveries by gravity flow:
 - -E. coli K011 = 90%
 - PRD-1 ~100%
 - Bacillus atrophius spores = 74%
- Recoveries using a peristaltic pump:
 - -E. coli K011 = 48%,
 - PRD-1 = ~100%
 - Bacillus atrophius spores = 52%

PEG (Polyethylene Glycol) Precipitation of Viruses in HFUF Retentates

- · Widely used for virus concentration
 - Protein precipitation
- Minimal virus inactivation; no extreme pH changes
- Secondary virus concentration methods need to be compatible with detection by both molecular and infectivity methods
- PEG precipitation has not been adequately evaluated or optimized for Adenoviruses, Noroviruses and Echoviruses
 - Evaluate effects of PEG and NaCl concentrations on method recovery of these viruses from HFUF retentates and adsorbent filter eluates

Effects of PEG & NaCl Concentrations on Adenovirus Recovery from Treated and Source Water Retentates

CCI	o v oi j		JIII 11	outou	arre	. 000		ator Notonial
PEG	NaCl		Ad 4	11		Ad 2	2	
PEG	Naci	N	Pellet	supernatant	N	pellet	supernatant	
6%	0.1M	2	81±16	16±1	2	24±30	33±13	Treated
076	0.3M	2	176±87	17±4	2	63±86	7±1	Water
	0.1M	2	107±83	12±5	2	61±83	4±1	vvalei
9%	0.3M	2	108±89	12±5	2	59±78	4±1	
	0.1M	2	92±28	8±8	2	51±68	3±1	
12%	0.3M	2	139±72	19±23	2	29±37	3±1	
15%	0.1M	2	51±1	6±5	2	30±40	5±1	
15%	0.3M	2	56±6	6±5	2	31±40	5±1	
			Ad 4	1		Ad	2	
PEG	NaCl	Ν	Pellet	supernatant	N	pellet	supernatant	
	0.1M	2	14±7	7±8	2	43±1	15±21	Source
6%	0.3M	2	126±25	22±21	2	104±28	0±0	Water
9%	0.1M	2	4±1	2±2	2	65±40	7±10	vvalei
976	0.3M	2	50±21	1±1	2	57±10	0±0	
12%	0.1M	2	7±8	1±1	2	62±64	0±0	
14.79	0.3M	2	55±32	0±0	2	28±11	0±0	
15%	0.1M	2	2±1	0±0	2	59±64	0±0	
1070	0.3M	2	28±21	0±0	2	19±15	0±0	

Echovirus 12 and MS2 Recovery (%) by Different PEG Precipitation Conditions **Different PEG Precipitation Conditions** **Different PEG Precipitation Co

Conclusions for PEG Precipitation from HFUF Retentates

- · Effective for secondary virus concentration
- Higher virus concentrations in PEG pellets than in supernatants after centrifugation
- PEG-concentrated PEG samples were compatible with virus detection by both molecular and cell culture infectivity methods
- Overall, 9% or 12% PEG with either 0.1 or 0.3 M NaCl are effective conditions;
 - 0.3 M NaCl better than 0.1 M for Ad 41 in source water
- Virus recoveries by PEG precipitation were more variable from source water retentates compared to those from drinking water retentates

Argonide Nanoceram Electropositive Filter

- · Nanoceram filter (Argonide Corporation, Sanford, FL)
- · Recently developed electropositive filter
- · Reportedly unaffected by pH and salinity of water
- Made from nano alumina (AlOOH) fibers, 2 nm diam. & 0.3 µm long; grafted to microglass fibers; made like paper; 5" pleated cartridge
- External surface area about 500 m² per gram of material to provides a large area for adsorption of electronegative particles

Filter and Water Sources

- · Nanoceram filter and filter housing
- · Challenge with 40 L of viruses-seeded water
- 10¹⁰ PCR units of adenovirus
- 10¹⁰ RT-PCR units of coliphage Qβ
- 106 RT-PCR units of Norovirus GII.4
- 106 murine norovirus
- Source and finished water from drinking water treatment plant in Carrboro, NC.
- · Finished water dechlorinated with sodium thiosulfate
- Filter at 25 L/min

Beef Extract Elution of Adsorbed Viruses

- Elution medium: 3% BE (Powder, Becton-Dickinson and Company, Sparks, MD), 0.1
 M glycine and with the pH adjusted to 9.5.
- A 500 mL volume was recirculated through the cartridge filter using a peristaltic pump at a flow rate of 1.25-2.75 L per minute
- · Flow direction changed every 5 min
- pH monitored
- Final eluent adjusted to pH 7.3

Viral Nucleic Acid Extraction

- Chemical extraction from 100 μL sample volumes
- Guanidinium thiocyanate (GuSCN) extraction via Boom et al. (1990).
- Extract applied to a HiBind RNA minicolumn (OMEGA Bio-Tek, Doraville, GA) and centrifuged at 16,000 x g for 1 minute.
- Columns with nucleic acid washed 2X with 75% ethanol
- Nucleic acids eluted from column with nuclease free water
- Stored at -80° C until analysis.

Virus Quantification by Real-Time PCR

- Previously described real-time PCR quantification:
 - adenovirus 41 (Jothikumar et al, 2005)
 - norovirus (Jothikumar et al, 2005)
 - murine norovirus (Bae and Schwab. 2008)
- coliphage Qβ (Kirs and Smith. 2001)
- Quantitech probe PCR & RT-PCR kits (Qiagen, Valencia, CA)

- Reaction volume = 25 μ L; 2 μ L of extracted viral nucleic acid. Smart Cycler thermocycler (v. 2.0c, Cepheid, Sunnyvale, CA). Calibration curve used to calculate virus particles (VP) based on cycle threshold value (Ct) created from ten-fold serial dilutions of viral stocks
 - Adenovirus: VP/2μL = 10(-0.2814 * Ct value + 12.256) (R² = 0.9986)
 - Norovirus: VP/2µL =10(-0.2726 x Ct value + 10.362) (R² = 0.9988)
- $\text{ Murine norovirus: } VP/2μL = 10(-0.239 \text{ x Ct value} + 10.41) (R^2 = 0.990) \\ Qβ: VP/2μL = 10 (-0.306 \text{ x Ct value} + 13.266) (R^2 = 0.996) \\ \text{Total VP calculation: } \text{Total VP} = VP/2μL \text{ x 250 x vol. of spike, filtrate or BE solution}$
- Adsorption efficiency: [1-(total VP in the filtrate/total VP in the spike)]*100 Elution recovery: (total VP in eluent/total VP in spike)*100

Virus Recovery from Source Water using Nanoceram Filter

Virus	% Ads.	% Recovery	# Trials
Adenovirus 41	81% (± 2.4%)	2.4% (± 0.48%)	4
Q _β Coliphage	53% (± 29%)	10% (± 2.8%)	4
Murine Norovirus	74% (± 18%)	9.8% (± 3.3%)	3

Virus Recovery from Finished Water using Nanoceram Filter

Virus	% Ads.	% Rec.	# Trials
Ad 41	97% (± 2.1%)	1.4% (± 0.59%)	8
Q _β coliphage	95% (± 0.86%)	36% (± 20%)	8
Norovirus	ND	26.8%	2

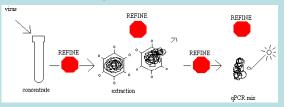
Effect of Tween 80 on BE Elution of Norovirus GII.4 Adsorbed to Nanoceram Filters

Elution of noro GII.4 using 3% beef extracts and a peristaltic pump

Eluent	Estimated norovirus input	Elution replicates % recovered			Average % norovirus recovered		
3% BE	3.5x10 ⁶	86%	88%	133%	139%	111% (± 29%)	
3% BE, 0.1% Tween 80	3.5x10 ⁶	95%	140%	99%	141%	119% (± 26%)	
3% BE, 0.01% Tween 80	3.5x10 ⁶	99%	53%	103%	98%	88% (± 24%)	

Ad41 and Norovirus GII.4 Recovery by PEG Precipitation from Nanoceram Filter Eluates

Mean % recovery of Ad 41 and noro GII.4 from eluates by PEG precipitation (n=3)


	6% PEG	6% PEG	9% PEG	9% PEG
	0.1 M NaCl	0.3 M NaCl	0.3 M NaCl	0.3 M NaCl
Adenovirus 41	1.7% (± 0.14%)	2.9% (± 1.0%)	36% (± 2.3%)	39% (± 6.6%)
Norovirus GII.4	5.6% (± 1.1%)	5.4% (± 0.46%)	52% (± 7.8%)	59% (± 4.8%)

- Higher mean % recoveries of both viruses using 9% instead of 6% PEG (unpaired t-test, p < 0.05)
- Mean % recoveries not significantly different between 0.1 M and 0.3 M NaCl for Ad41 (unpaired t-test, p = 0.078) or Noro GII.4 (unpaired t-test, p = 0.122)

(RT-PCR) Inhibitor Removal and Control in PEG Concentrates

- Substances in virus concentrates inhibit PCR
 - Humic and fulvic acids
 - Other organic compounds
 - · proteins, polysaccharides, polyphenols, glycoproteins, etc.
 - Metals
 - etc.
- · Quantitative real-time PCR is especially sensitive to such inhibition
- · Various methods are available to separate viruses and viral nucleic acids from inhibitors

Sample Processing Steps at which to Remove/Separate/Block Inhibitors

- · Prior to nucleic acid extraction
- · During nucleic acid extraction
- · After nucleic acid extraction
- · During nucleic acid (RT-)PCR amplification

PEG Samples and Viruses

- PEG concentrates from 40-L water samples processed by Nanoceram filter adsorption-elution (beef extract)
- 3 mL of composite concentrate, added 10 µL of adenovirus, norovirus, and MS-2 stocks
 - virus levels: 9.2x108, 2.8x104 and 5.2x108 PCR units
- Viruses also spiked into 3 mL of PCR grade deionized (DI) water. (Dracor) as a inhibitor-free control sample
- · Both PEC concentrate and DI control processed
- qPCR CT values of PEG and DI control samples were compared to calculate ΔCt values
 - $-\Delta Ct = CT_{Sample} CT_{Dicontrol}$
 - Smaller ΔCt: less inhibition
 - Larger ΔCt: more inhibition

Treatments before NA Extraction with GuSCN

- Sephadex G-200 column chromatography
 - High salt TE buffer to prepare columns
 - Biospin polypropylene columns
 - Bio-Rad Cat. #732-6204, 3 cm, 0.8 ml capacity
 - 1 mL polypropylene syringe column (BD) with sterile glass wool (Supelco)
- Chelex 100 + Sephadex G-200 columns
 - Chelex in bottom half; G-200 in top half

Modifications during nucleic acid extraction

- GuSCN extraction of different sample volumes

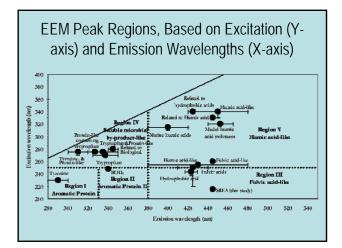
 400, 300, 200, 100, and 50 µl samples
- Chloroform extraction of 300 μ L & 100 μ L sample volumes
 - 1:1 volume ratio
- Polyvinylpyrrolidone (PVP)-GuSCN extraction
 - 1% final concentration of PVP in sample-GuSCN mix

Post-extraction Modifications

- Isopropanol precipitation of NA Extract
 - Sample NA extract supplemented with Na acetate and isopropanol; centrifuged; NA ppt. washed with 70% EtOH; centrifuged; NA ppt. dried, then resuspended in water

qPCR Methods

Adenovirus: JTVXF primer, JTVXR primer, JTVXP probe


- Jothikumar and Cromeans (2005).
- Norovirus: JJGII primer, COG2R primer, Ring2-TP probe
 - Jothikumar and Lowther (2005)
- MS-2: ms2ks2 primer, ms2ks1 primer, ms2ks3 probe
 - Bae and Schwab (2008)
- Smart Cycler (Cepheid)

Modifications to qPCR Mix

- Add PVP
- Add PVP and glycerol
- Add Bovine Serum Albumin (BSA)

Fluorescence Spectrophotometry:

- Fluorescent excitation emissions matrix (EEM) to quantify dissolved organic matter
- Detects and differentiates humic acids, fulvic acids, tryptophan and other potential organic inhibitors
- Sample run included quinine hemisulfate stock solutions for calibration and reagent grade water for comparison and background subtraction

Treatments for qPCR Inhibitors

- No treatment before, during, or after extraction of viruses concentrated from water samples improved viral detection by qPCR with the same effectiveness for adenovirus, norovirus, and MS-2 in PEG concentrates of surface water samples
- Different methods or treatments may be needed for each type of water sample and virus.
- Specific treatments were more effective in lowering delta ct values for qPCR detection of viruses in many of the samples.

qPCR detection of three viruses in different water sample volumes subjected to chloroform extraction relative to detection in reagent water

	Adenovirus			N	orovir	us	MS-2			
Modification	∆Ct value	∆Ct st dev	р	∆Ct value	∆Ct st dev	р	∆Ct value	∆Ct st dev	р	
CHCI ₃ 300	7.23	0.539	<0.01	8.62	0.992	<0.01	5.50	0.334	<0.01	
CHCI ₃ 100	<u>2.96</u>	0.309	<0.01	<u>3.34</u>	0.479	<0.01	<u>5.15</u>	0.715	<0.01	

Comparison of different surface water sample volumes subjected GuSCN extraction for differences in qPCR detection of adenovirus and norovirus relative to detection in reagent water

	Quasi-Point Source-Impacted Water						Non-point Source-Impacted Water					
Sample Volume	Adenovirus			Norovirus			Adenovirus			Norovirus		
	∆Ct value	∆Ct st dev	р	∆Ct value	∆Ct st dev	р	∆Ct value	∆Ct st dev	р	∆Ct value	∆Ct st dev	р
400 µL	5.84	0.50	<0.01	7.57	0.288	<0.01	5.71	0.57	<0.01	7.57	0.28	<0.01
300 µL	4.80	0.68	<0.01	7.91	2.06	<0.01	7.79	2.79	0.0113	3.03	0.52	<0.01
200 µL	4.96	0.82	<0.01	6.52	0.759	<0.01	5.10	0.34	<0.01	2.68	0.86	<0.01
100 μL	5.33	0.85	<0.01	3.59	0.700	0.06408	5.00	9.35*	0.1280	1.39	2.60	0.5500
50 μL	4.37	1.78	0.0116	2.47	0.770	<0.01	4.18	0.62	<0.01	0.10	0.21	0.6465

Most Effective Sample Treatments

- Sephadex G-200 followed by chloroform extraction
 - Best for adenovirus in NPS water sample
 - Best for MS-2 in quasi-PS water sample
- · Chloroform extraction alone
 - Good for norovirus in NPS water sample.
 - Best for MS-2 in NPS water sample
- · GuSCN extraction of smaller sample volume
 - Best for norovirus in both samples
- · Sephadex G-200 and Chelex 100 treatment
 - Best for adenovirus in quasi-PS water sample

Overall Summary

- Primary virus concentration by improved recirculating UFUF is effective and rapid
- Primary virus concentration by once-though HFUF shows promise
- Primary virus concentration by Nanoceram filters is effective and very rapid but less effective than desired for adenoviruses
- PEG precipitation is effective for 2nd step virus concentration
- PEG sample treatments prior to nucleic acid extraction reduce sample inhibition and improve virus detection by qPCR

Thank-you! Questions? Comments? Suggestions?

Collaborators: Erik Andersen

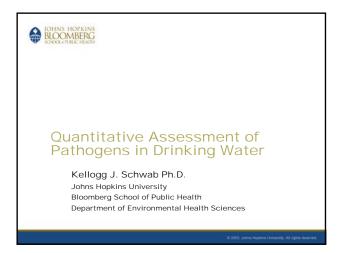
Lisa Casanova

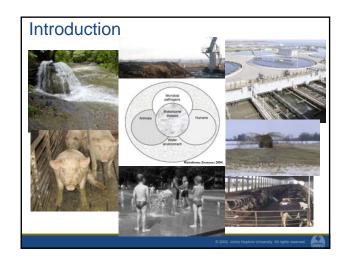
Christopher Gibbons Hee Suk Lee

David Love

Roberto Rodriguez
O.D. Chip Simmons III

Lauren Thie Jan Vinjé Jianyong Wu Ming Jing Wu Additional \$ Support:


AWWARF


NOAA - CICEET; NERRS

NWRI

SCCWRP

UNC Sea Grant

Microorganisms in Source and Finished Water

Microbial contaminants can be divided into 3 categories:

- 1. Parasites
- 2. Viruses
- 3. Bacteria

KEY concepts to keep in mind

- Size of the microorganism
 Parasites > Bacteria >> Viruses
- 2. Resistance to environmental degradation and chemical inactivation

Parasites > Viruses >> Bacteria

© 2003, Johns Hopkins University, All lights reserved.

Waterborne Pathogens and Gastroenteritis Etiologies of Waterborne Outbreaks, 1991-2002 **On average, between 1991 and 2002, 17 waterborne disease outbreaks (WBDOs) were reported annually. **38% of outbreaks had an unidentified etiology **WBDOs were primarily associated with inadequately treated water systems and contamination issues related to aging distribution systems **In some instances, the water systems were in compliance with current water quality standards **Figure taken from Crain 2006: AGI-acute gastrointestinal lines

Waterborne Pathogens and Gastroenteritis

- Multiple Factors Influence Reporting of AGI
 - Public awareness of waterborne illnesses
 - Local requirements for reporting cases of particular diseases
 - The surveillance and investigative activities of state and local public health and environmental agencies
 - Availability of and extent of laboratory facilities
- Current waterborne disease surveillance system is passive
 - Waterborne disease outbreaks are likely to be under reported
 - Endemic waterborne disease risk in the United States is not well understood

Craun et al. 2006

© 2003, Johns Hopkins University, All rights reserved

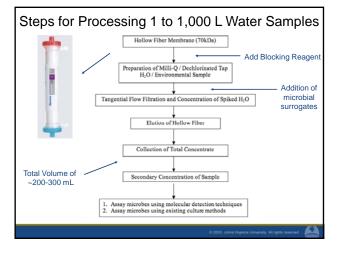
Why is all of this of interest?

One of the major limiting factors in assessing microbial loads in source and treated drinking water has been the lack of an effective microbial collection method capable of efficiently and simultaneously recovering low levels of bacteria, viruses and protozoa, which then can be identified and quantified rapidly with or without cultivation.

© 2003, Johns Hopkins University. All rights reserved.

Research Objective

Develop rapid, sensitive recovery and detection methods for the quantitative assessment of pathogenic microorganisms present in drinking water.



Microbial Recovery

Develop and optimize sensitive concentration and isolation methods utilizing filtration technology capable of simultaneously recovering low levels of protozoa, viruses, and bacteria from large volumes of water.

- Demonstrate ability of tangential flow filtration (TFF) to efficiently recover/concentrate intact microorganisms from water
- Determine lower limit of detection for each class of microorganism

© 2003 Johns Hopkins University: All rights reserved

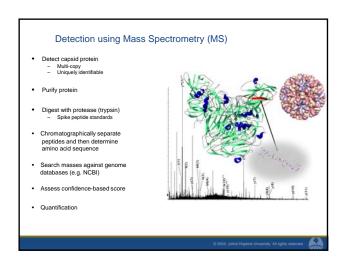
Microbial Surrogates Utilized in Method Evaluation

- Vegetative Bacteria
 - Escherichia coli CN-13
 - Enterococcus faecalis
- · Spore-forming bacteria
 - Clostridium perfringens
- Bacteriophage
 - MS2
 - PRD1
- Viruses
 - Murine norovirus (MNV-1)

© 2003; Johns Hopkins University, All rights reserved.

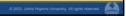
Pathogen Detection

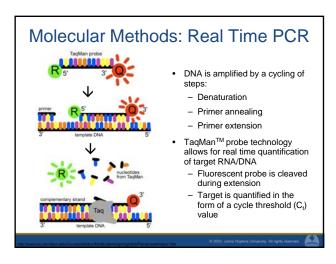
Develop rapid, quantitative molecular detection techniques for the identification of target pathogens including direct comparison with existing traditional culture methods.

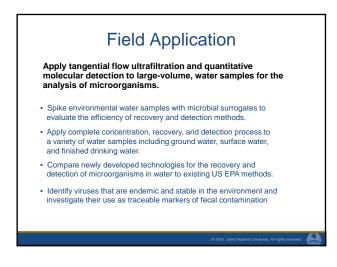

- · Optimized FISH methods for the identification of protozoa.
- Developed mass spectrometry (MS) methods for the identification of select microorganisms.
- Refined qPCR and qRT-PCR assays for the detection of select microorganisms.
- Developed loop-mediated isothermal amplification (LAMP and RT-LAMP) for the detection of select microorganisms.
- Employed the use of internal standard controls for the detection of PCR inhibition caused by molecular inhibitors present in water samples.

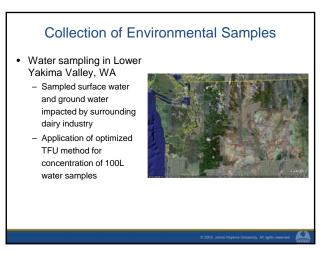
© 2003. Johns Hopkins University. All rights reserved.

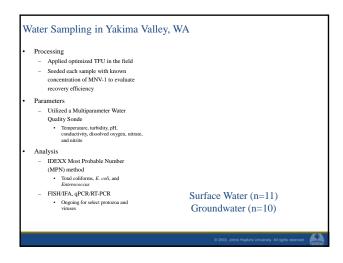
Fluorescent In Situ Hybridization (FISH)


- Employs a fluorescently labeled oligonucleotide probe targeting species-specific sequences of 16S rRNA
- rRNA
 - Exists in multiple copies
 - Present in high copy numbers in viable cells
 - Single-stranded regions allow easy
 access for the probe and natural signal amplification
- Hybridization
 - Probes recognized by fluorescent antibodies
- Observed under epifluorescence microscope

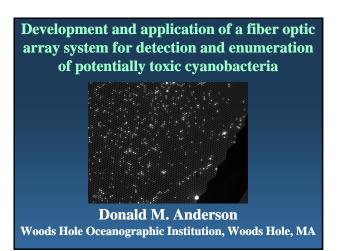

© 2003, Johns Hopkins University. All rights reserved.


MS Key Findings – Norovirus


- The NV capsid protein is detectable in the clinical range using MALDI-TOF MS
- Clinical sample complexity requires a more nuanced approach (ESI-MS/MS)
- Using additional sample processing, MS/MS methods can improve sensitivity by 2-3 orders of magnitude
- AQUA peptides allow for the quantification of peptides from capsid protein of norovirus

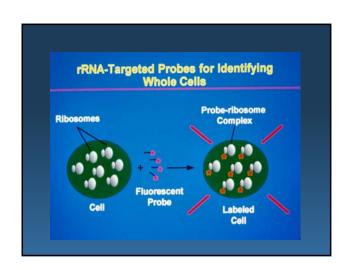


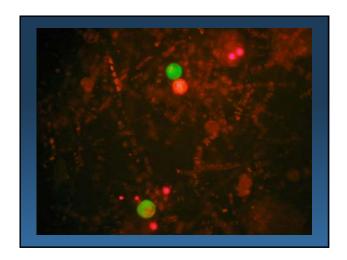
Molecular Methods: LAMP • Loop-mediated isothermal amplification (LAMP) is a novel detection method which relies on auto-cycling strand displacement DNA synthesis. • RT may be used in conjunction for detection of RNA viruses • Increased sensitivity and specificity compared with conventional PCR • Multiple primers must recognize several distinct regions on the target RNA/DNA • Products can be analyzed in real time by measuring the increase in turbidity during DNA amplification. • Allows for real time quantification



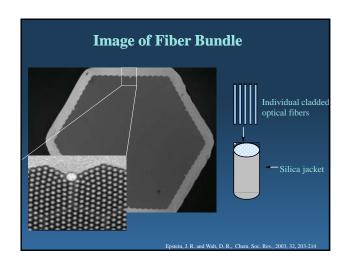
Public Health Implications

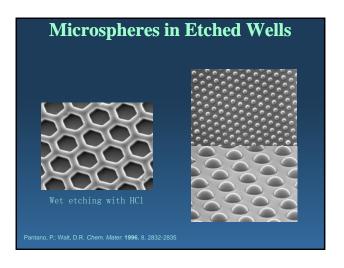
- Developing a universal method for the recovery of microorganisms will enable water utilities and regulatory agencies to better address problems within source waters and public water systems.
- The utilization of molecular detection techniques will provide increased confidence in the sensitivity, specificity, and inhibition detection/control critical for estimating levels of risk.
- A more comprehensive understanding of the microbial contamination of water sources will allow for exposure risk assessments to be generated for individual microorganisms
- Future applications of this method:
 - Further the development of the usefulness of host-specific viruses in microbial source tracking efforts
 - Currently limited by lacking concentration and detection methods
 - Assist in the formulation of effective control measures for the reduction of water-related transmission of pathogenic microorganisms

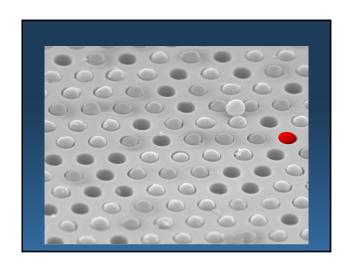

The problems:

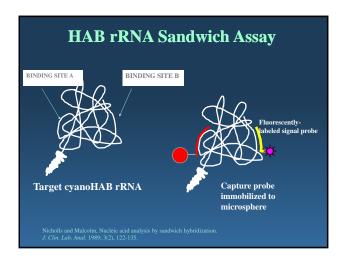

- Many cyanobacteria produce potent toxins that threaten human health
- CyanoHABs can take multiple forms, ranging from dense surface scums to dilute suspensions that can still cause harm.
- Many different species and strains co-occur, and strains of the same species can be toxic or non-toxic, or can vary dramatically in the amount of toxin produced under different conditions.
- Distinguishing characteristics can be difficult to discern under the light microscope, yet such fine levels of discrimination are not feasible in monitoring programs that generate large numbers of samples.

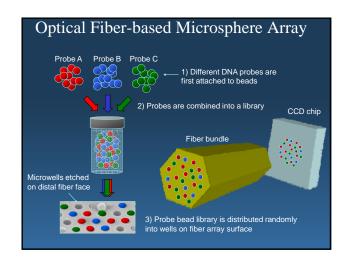
The overall project goal is to adapt and validate a rapid and accurate optical fiber-based technology for cyanoHAB cell detection and enumeration in both laboratory and field settings

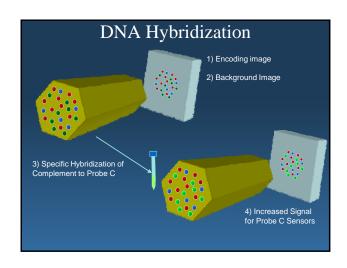

Specific objectives are to:

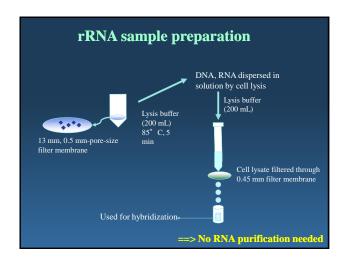

- 1) Design rRNA signal and capture probes for the three most important toxic cyanobacteria (*Microcystis aeruginosa*, *Cylindrospermopsis raciborskii*, and Anabaena flos-aquae);
- 2) Design and test a second probe pair for each species, to incorporate redundancy into the array;
- 3) Test these probes in the fiber-optic array format and determine detection limits, specificity, and dynamic range;
- 4) Refine hybridization conditions to reduce processing time;
- 5) Develop procedures to analyze multiple cyanoHAB species simultaneously using a single fiber bundle in a multiplexed format

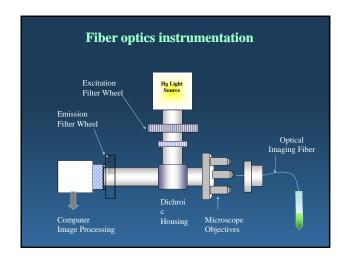


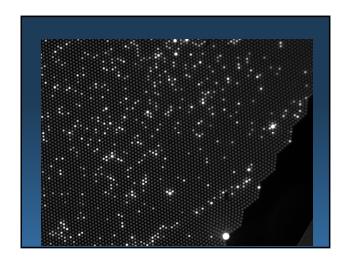


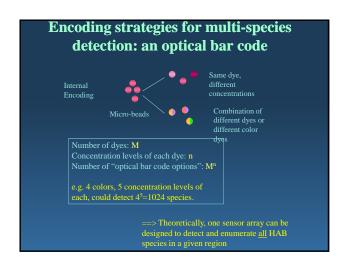


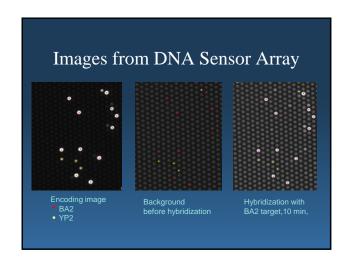


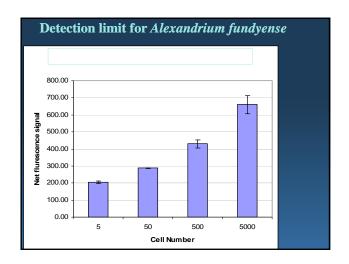


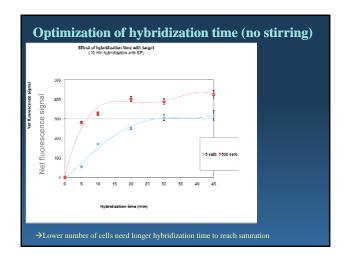


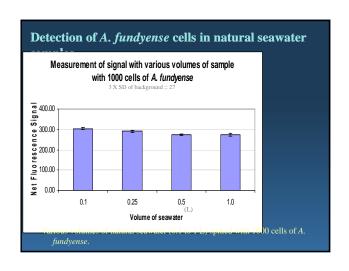


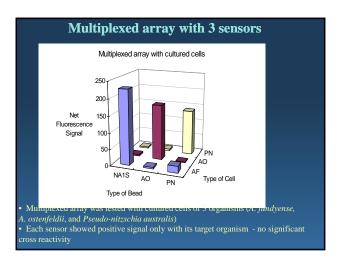


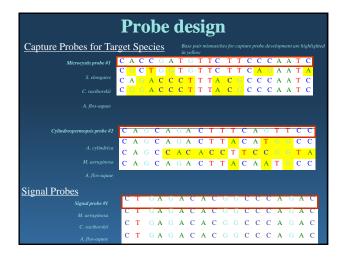


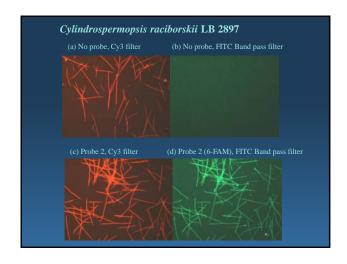


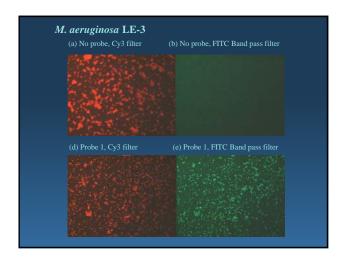


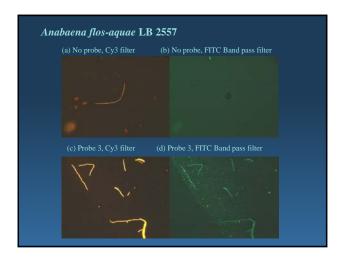




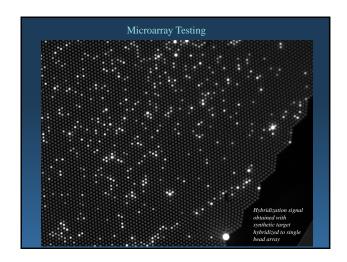





Application to cyanoHABs

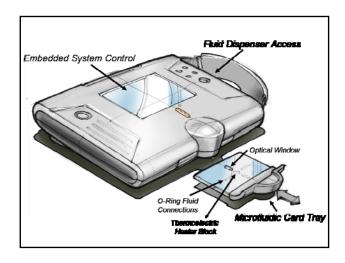

Methods

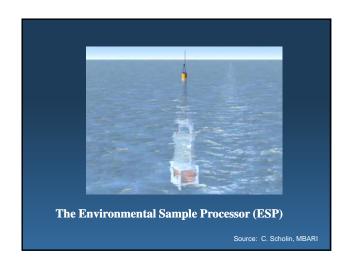
- Signal and capture probe design
 - 16S rRNA gene sequences compiled from GenBank for target cyanoHAB taxa: Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Anabaena flos-aquae
 - Probe identification performed using sequence alignments of target/non-target species
 - Included published probes for Microcystis, Anabaena/Aphanizomenon, and "Nostoc group" (Nostoc/ Anabaena/Aphanizomenon)
- Probes tested against target and non-target species using fluorescent in situ hybridization (FISH) to determine efficacy and assess cross-reactivity; probes that exhibit cross-reactivity require re-design
- Probes successfully tested for cross-reactivity are then transitioned to fiber-optic microarray format and tested against synthetic target and cell lysates from target species

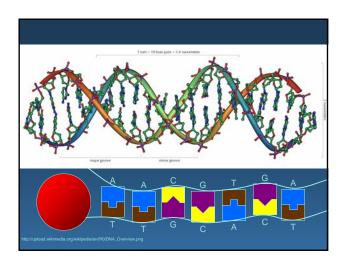

Probe Number	CYL 1	000	ANADAI		,		z (in r	INCODO 41	wono a	Michor	***CDO D4	MICOO F
Length (bp)	18	20	30	19	27	22	28	27	20	60.7	26	20
Tm (°C)	50.6	54.9	61.5	50.0	66.3	51.4	57.0	61.5	56%	21	26 64	59.0
Microcystis sp. 118/2	30.0	34.5	01.3	30.0	00.3	31.4	37.0	+	+	+	+	+
									Ţ	-		Ť
Microcystis sp. TN-6 Microcystis sp. OS-3								+		+	+	
M. aeruginosa LB 2061								-		-	,	
	-	-	-	-	-				*			
M. aeruginosa LE-3	•		-	. *				+	*	*	*	*
M. flos-aquae 2673	-		-	-		0.0			*	577	200	
C. raciborskii AWT 205	+	+	-	+	+	-			12	+	*	+
C. raciborskii LB 2897	+	+		-	-			-	-			
C. raciborskii THAI	+	+	-	-	-		+	-	-			
A. flos-equee LB 2557	-	-	-	+	-				-			
A. flos-aquae LB 2558	-	-	-	+	-		+		-			
A. flos-aquae NH-5		-	-						-			
A. flos-aquae UTEX 2391	-	-	-	+	+		-	-	-	-	-	-
Aphan, flos-aquee	-	-	-	-	+	-			ı			
A. cylindrica UTEX B 629	-	-	-		+	-	-					
A. bergii AZ-73	-	-	-	-	-	-	-		ı			
Anabaenopsis sp. AZ-16	-	+							ı			
Aphanizomenon sp. AZ- 10			-	+	+	-	-					
Nostoc muscorum UTEX 1037 Synechocystis PCC	•	-	-	-	-		-			_	_	
6803 S. elongetus PCC 7942									-	-	-	- 1
S. elongatus PCC 7942 Osoillatoria so. AZ-40									1.			
								•		•	-	
Lyngbya sp. 7-10a								-	-	-	-	-
Nodularia sp.	-	-	-	-	-	-	-		ı			
Planktothrix PCC 7811 Symechococcus so.	-	-							ı			

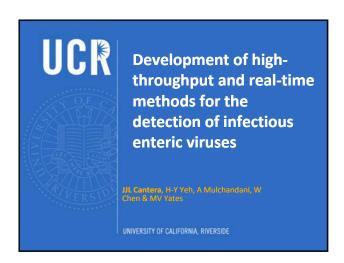
Twelve probes tested for cross-reactivity (in progress)

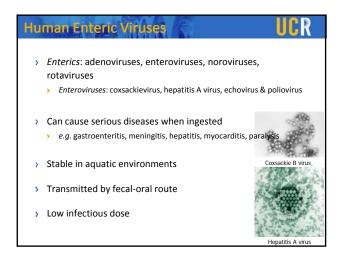
- Microcystis probes (3)
 - Tested against 18 cultures (in progress)
 - All designed (3) and published (2) probes exhibit cross-reactivity with Oscillatoria; redesign in progress
- Cylindrospermopsis probes (2)
 - Tested against 18 cultures
 - One probe transitioned to fiber optic microarray format
 - Second probe exhibited cross-reactivity with $Anabaen opsis; \ {\bf redesign}$ in progress
- Anabaena probes (5)
 - All designed (3) and published (2) probes either exhibited crossreactivity or failed to detect target species
 - Taxonomy of Anabaena problematic (not monophyletic); redesign efforts needed to develop probe for Anabaena/Aphanizomenon or "Nostoc group"

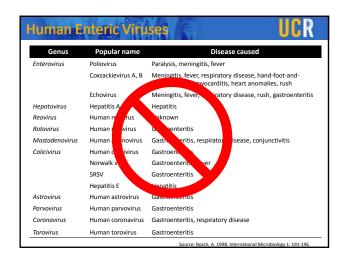

Microarray testing

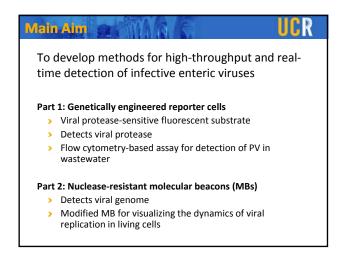

- Capture probe performance tested using Cylindrospermopsis probe #1 (CYL1) coupled to activated microbeads and against a synthetic target
 - Single bead array exposed to Cy5-labeled synthetic targets with sequences complementary to the capture probe
 - Hybridization was performed at room temperature using 100 μl of synthetic target solution (100 $\mu M)$ and a hybridization time of 10 minutes

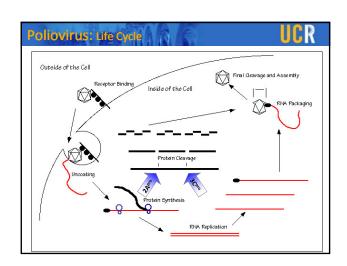

Future directions

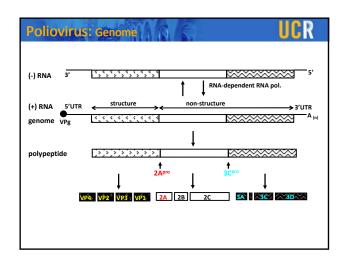

- · Probe redesign and testing
- Transition additional probes to microarray format (single bead arrays) and assess performance using synthetic targets and cell lysates (assess detection limits, specificity, and dynamic range)
- Assess performance of multiplexed array using single and multiple species
 - single species and mixed cultures
 - spiked/unspiked field samples (2009 field sample collections include lakes in OR, MA, MD, CA, FL and Great Lakes)
- Explore application of the microarray technique on a portable instrument
- Explore remote deployment of the microarray technique on a robotic, in situ instrument

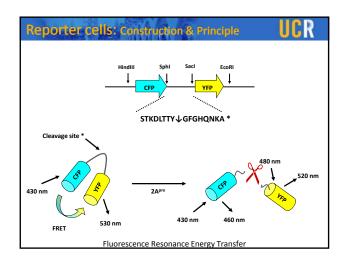


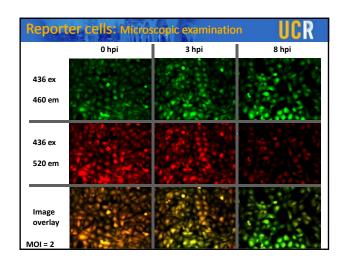


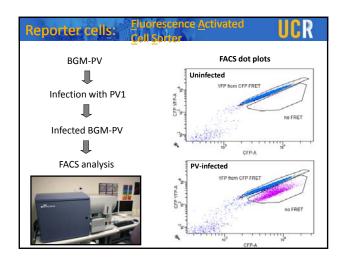


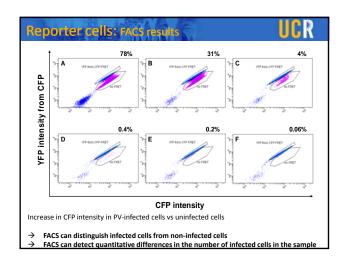


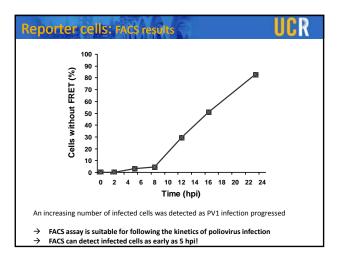


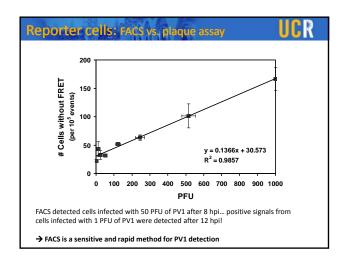


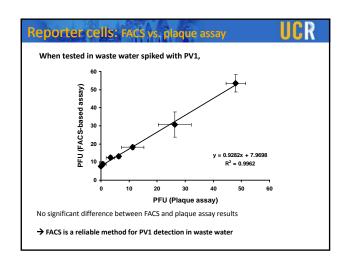

Principle of the assay	Example	Infectivity test	Detection limit (particles/ml)	Duration
Visualization of viral particles	EM	No	10 ⁵ to 10 ⁶	< 24 hr
Detection of viral proteins or antibodies	ELISA	No	10 ⁵	< 2 hr
Detection of viral genome	Probe hybridization	No	10 ⁴	< 2 hr
	RT-PCR	No	10 ¹ to 10 ³	< 8 hr
Detection of cytophatic effect	Plaque assay	Yes	10 ⁰ to 10 ¹	2 to 14 days

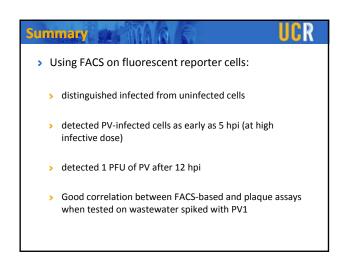


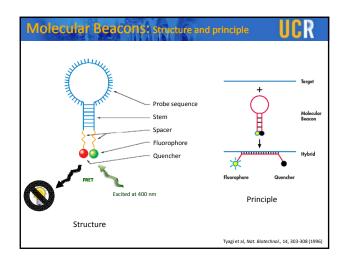


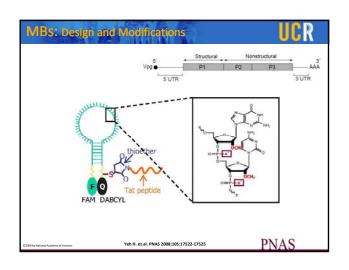


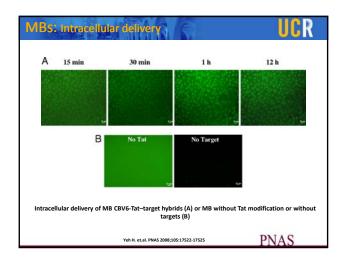


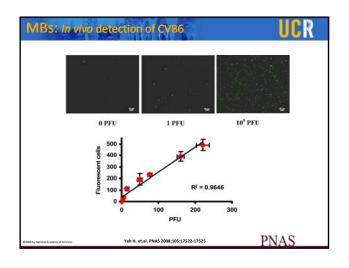


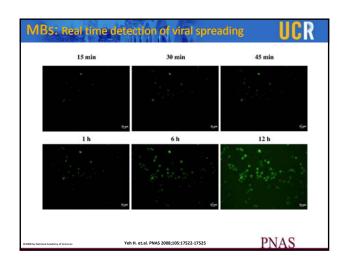


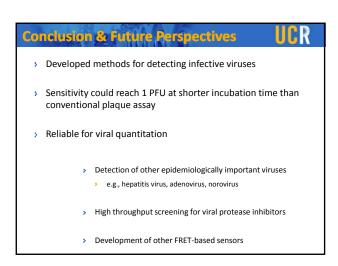


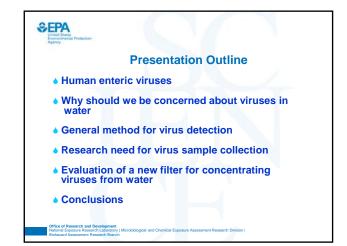


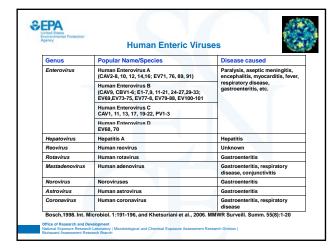


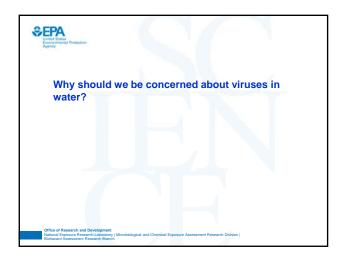


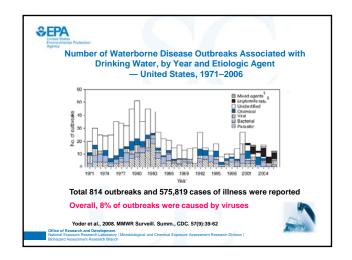


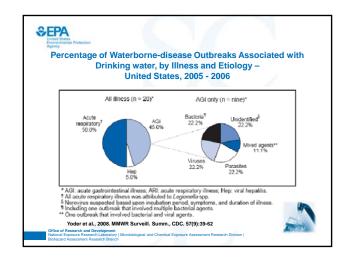


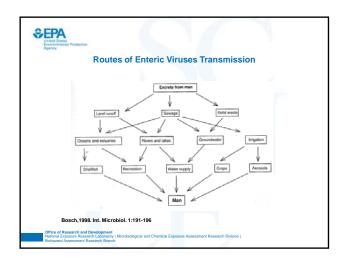

Modified molecular beacon Nuclease-resistant MB with TAT peptide was designed Detected as few as 1 PFU during the early stage of viral replication Fluorescence assay was comparable with the plaque assay Used to monitor the dynamics of viral replication during a 12-h infection period

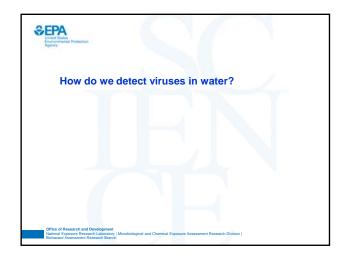


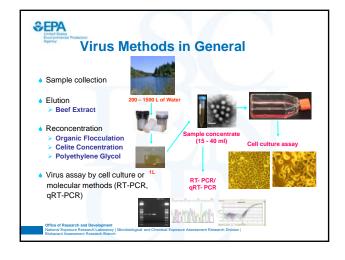

Drs. Marylynn Yates and Wilfred Chen Members of Yates and Chen Laboratories B. Walters (UCR Institute for Integrative Genome Biology) U.S. Environmental Protection Agency

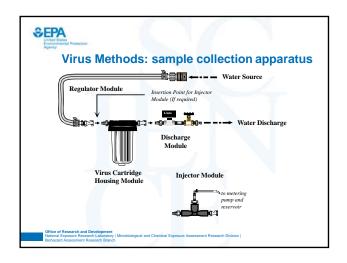


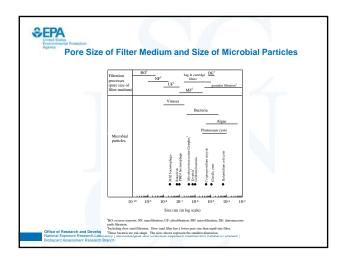


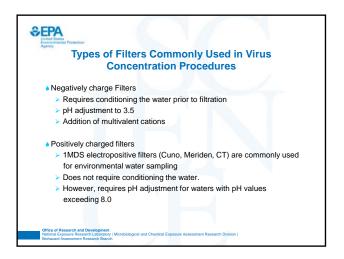


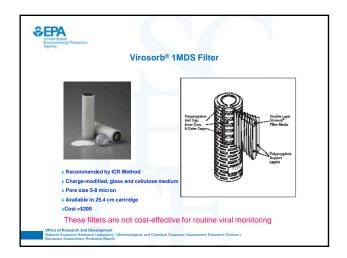


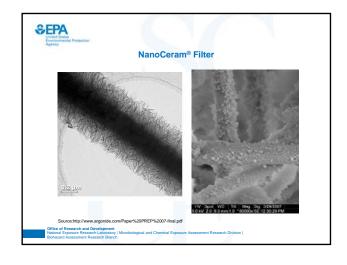




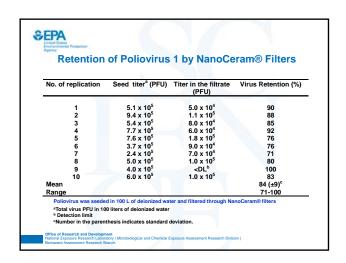


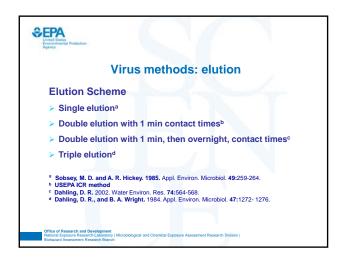


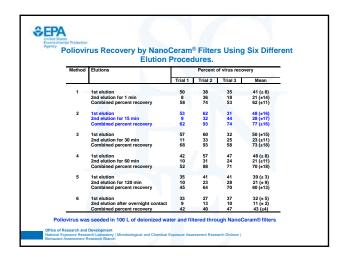


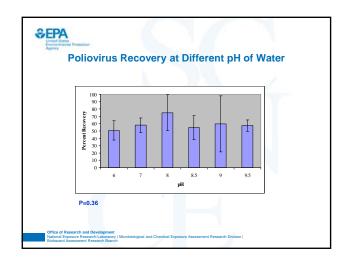


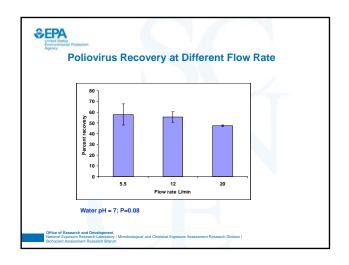


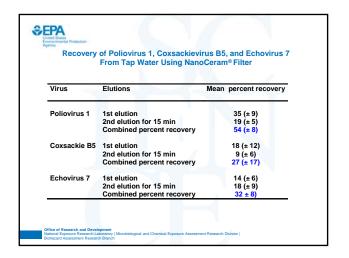


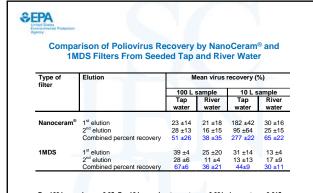












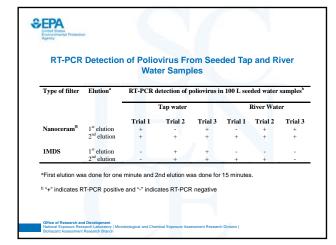
Ohio River Water Characteristics

Event	pH (range)	Turbidity (range) NTU
During 100 liter spiking experiments	7.7 (7.6-7.8)	41 (26-90)
During 10 liter spiking experiments	7.7 (7.6-7.8)	1.2 (0.17-2.75)

For 100 L samples p=>0.05; For 10 L samples, tap water p=<0.001, river water p=0.015

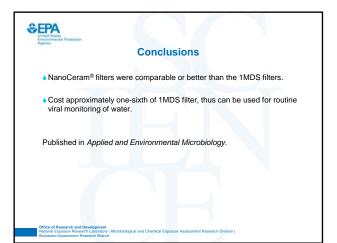
Comparison of Norovirus Recovery by NanoCeram® and 1MDS Filters From Seeded Tap and River Water

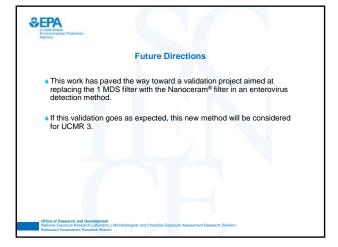
Type of filter	Mean virus recovery (%)				
	Tap water	River water			
NanoCeram®	3.6 ± 0.6	12.2 ±16.3			
1MDS	1.2 ± 1.4	0.4 ± 1.8			


Norwalk virus was seeded in 10 L of dechlorinated tap water or river water and filtered through NanoCeram® or 1MDS filters

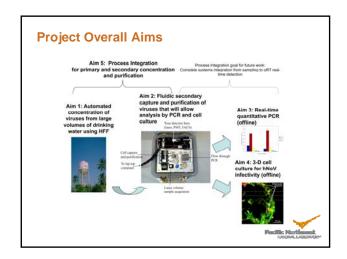
Comparison of RT-PCR Reaction Inhibition For Norwalk Virus and Poliovirus in NanoCeram® and IMDS Filters Concentrates

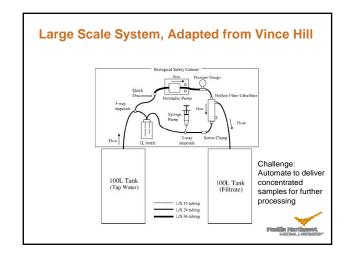
Type of filter	Elution	RT-PCR inhibition for norwalk virus/poliovirus							
			Tap water		River water				
		Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3		
Nanoceram [®]	1st elution	+/ND	+/ND	+/ND	+/+	+/+	+/+		
	2 nd elution	+/+	+/+	+/+	+/+	+/+	+/+		
1MDS	1st elution	+/ND	+/ND	+/+	+/+	+/+	+/+		
	2 nd elution	+/+	+/+	+/+	+/+	+/+	+/+		


ND = not done
'+' indicates spiked samples were not inhibitory for RT-PCR reactions



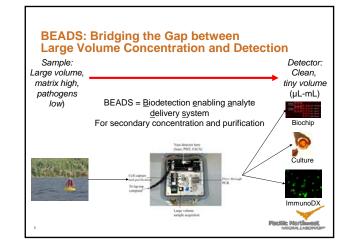
Conclusions

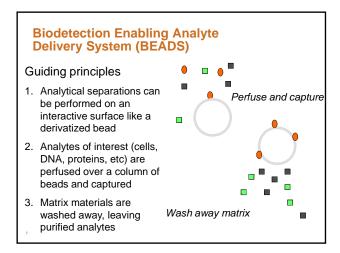

- The mean retention of poliovirus by NanoCeram® filters was 84 percent.
- The highest virus recovery (77%) was obtained by immersing the filters in beef extract for 1 min during the first elution and 15 minutes during the second elution.
- The recovery efficiencies of poliovirus, coxsackie B5, and echovirus 7 were 54%, 27%, and 32%, respectively.
- There was no significant difference in poliovirus recovery at tap water pH
- There was no significant difference in virus recovery over a water flow rates of 5.5 L/min to 20 L/min.

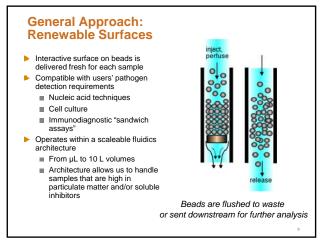

Automated Methods for the Quantification and Infectivity of Human Noroviruses in Water Timothy Straub, PI, timothy.straub@pnl.gov. Richard Ozanich, Co-PI, Richard.Ozanich@pnl.gov. Rachel Bartholomew, Co-PI, Rachel.Bartholomew@pnl.gov. Cindy Bruckner-Lea, Co-PI, Cindy.Bruckner-Lea@pnl.gov

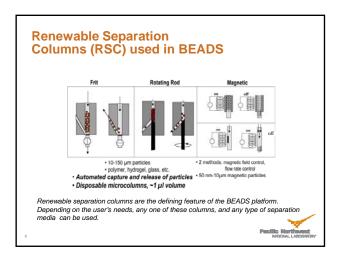
Methods for Capturing Pathogens from Large Volumes of Water – Aim 1

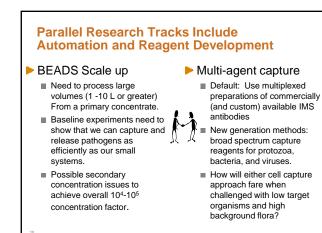
- Need: Ability to efficiently capture and concentrate viruses, bacteria, and protozoa from large volumes of water
 - Pathogen concentrations in water are often very low (<1/100 mL for bacteria to <1/1,000 L for viruses)
- Methods we are investigating are mostly off the shelf technology
 - Hollow fiber filtration: Large volumes require large columns, high flow rates can be problematic
 - Sodocalcic glass wool: Very cheap, and may have great potential for viruses – investigating this summer DOE FaST team
- Modified system (next slide) may allow flow rates up to 15 I per minute

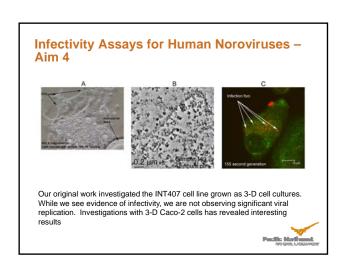


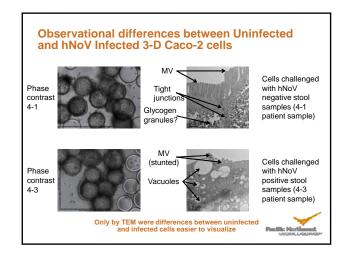



Secondary Concentration: The Major Bottleneck – Aim 2

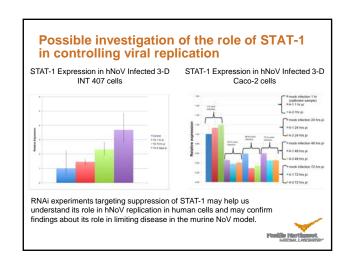

- For water we get to a primary filtrate and then:
 - Centrifugation will concentrate bacteria and protozoa, but it is a manual process.
 - Viruses are left in the supernatant and still need to be concentrated.
 - Or we use single-plex immunomagnetic separation: e.g. the "disease of the day" approach, and we lose information about other pathogens.




Batch Trials with Lectins: Reagent Development for BEADS Combinations of biotin labeled lectins were first mixed with bacteria, and then captured on streptavidin magnetic beads (indirect capture) Loss of CFU indicates better capture results Demonstrated capture of vegetative cells and spores. Challenge: direct capture. Lectins conjugated to the beads do not work as well. Viral capture has not shown as much promise


➤ For human noroviruses, there is not much choice for the development of better primers and probes ■ Variations within the ORF1-ORF2 junction – most conserved to detect the most known strains.

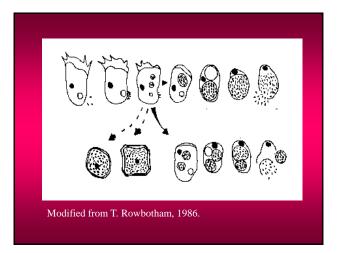
Reverse transcription real-time PCR - Aim 3


- Fast" vs. Slow real-time PCR
 - Newer real-time platforms allow PCR to be completed within 40 minutes. HOWEVER
 - Still need to perform reverse transcription, and that is still relatively slow
 - Your assay must be optimized for this platform...ORF1-ORF2 is not a good place to do this (secondary structure).
- For the purposes of this project, we are using the standard thermal cycling conditions.

Real-time PCR observations indicate viral RNA replication in Caco-2 and INT407 Cells 11 (No sd) 2,324 <u>+</u> Caco-2 1G (GII) 529 <u>+</u> 59 29 <u>+</u> 17 1563 <u>+</u> 180 329 9,375 <u>+</u> 386 (GII) 41 + 7 Not Not detected 1048 detected 36,206 <u>+</u> 6,390 <u>+</u> 132,919 <u>+</u> 4-3 (GI) 171 <u>+</u> 85 Not done 6,244 37,863 INT407 1G (GII) 529 <u>+</u> 59 493 <u>+</u> 28 Not done 5,370 <u>+</u> 4,800 <u>+</u> 316 992 386 (GII) 41 <u>+</u> 7 88 <u>+</u> 77 74 <u>+</u> 126 (1/3 429 <u>+</u> 363 (2/3 (3/3)detect)

Research Summary

- ► Fluidic architecture is currently being constructed to process large volumes of water.
- Secondary capture reagents being investigated at the bench
 - Testing this summer: DOE Faculty and Student Team (FaST) will allow us test both the large volume systems and perform batch capture experiments for secondary concentration – No charge to EPA STAR
- Further investigation of Caco-2 cell line for hNoV infectivity.
 - Results have been very promising, and if there is an underlying genetic mechanism inhibiting viral replication, this could provide new insights to develop better infectivity assays.


Acknowledgements

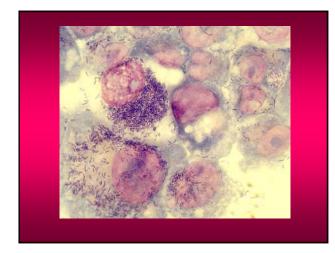
A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Funding for this work is provided by the United States Environmental Protection Agency STAR Grant Program (Grant # R833831010). The norovirus infectivity assay is jointly provided by NIAID under the Food and Waterborne Integrated Research Network Program (Contract number NO1-AI-30055) and the STAR Grant Program

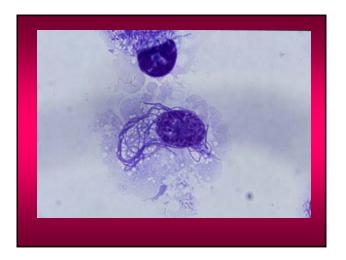
Food and Waterborne Diseases Integrated Research Network Amoebae Harbor Novel Pathogens That Slip
"Under the Radar Screen"

Recent EPA Study

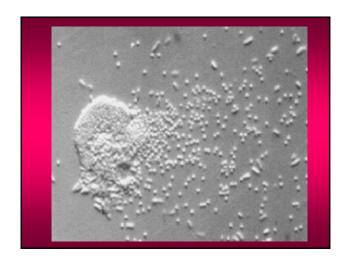
Examined 40 natural water samples: (lakes, rivers, ponds, wetlands, etc.)

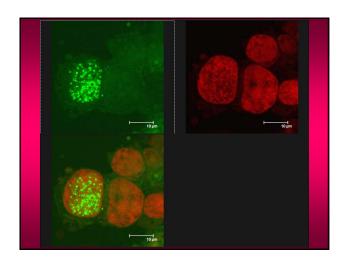
Examined 40 cooling tower samples


Also examined 20 other industrial: chillers, hot tubs, hot water taps/tanks, etc.

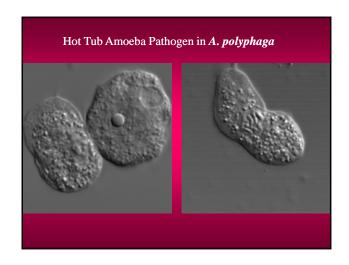

Designed a protocol to screen for infected amoebae

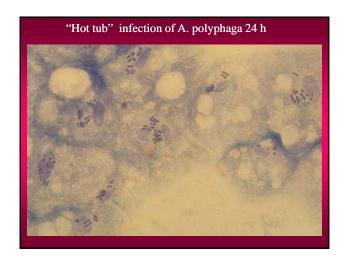
Environmental Parameters

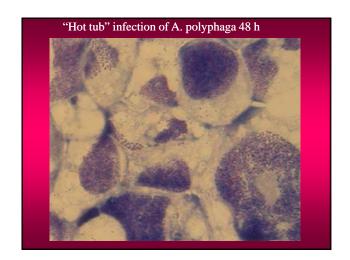

Temperature, pH, dissolved organic carbon (DOC), total nitrogen (N) and total bacteria per ml

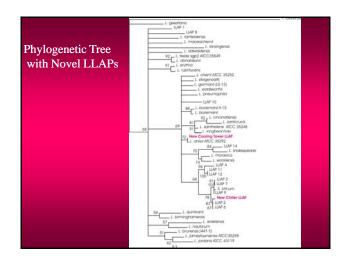

Logistic regression analyses were performed to find any parameter or set of parameters that were good predictors of the occurrence of infected amoebae

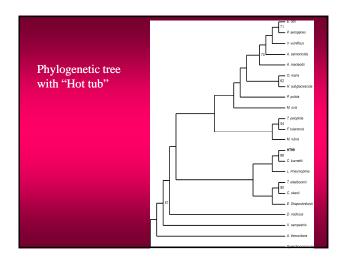


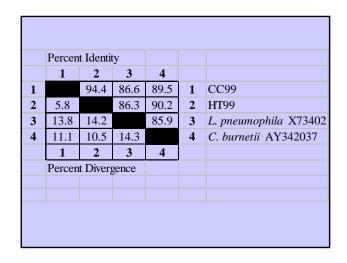












Results

22 of 40 cooling tower samples were positive

3 of 40 natural samples were positive

2 of 20 other industrial samples were positive (hot tubs)

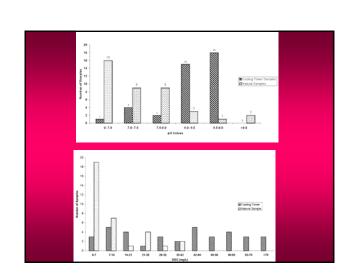
Odds ratio of finding infected amoebae in cooling towers vs natural environments is 16, i.e., 16 times more likely to find them in CTs (based on the way we look for them)

5 novel strains were identified, related to Legionella

Only 2 of the 22 infections were from *L. pneumophila* And 1 of the hot tub infections was from *L. pneumophila*

Several have not yet been isolated or identified

Of those that are culturable, at least 3 tested so far appear to infect human macrophages


Two non-culturable strains also infect macrophages

No environmental parameter was a significant predictor of occurrence of infected amoebae when cooling tower data were used alone

When data from 90 combined samples were used, pH and DOC were significant predictors

BUT cooling towers have higher pH values than almost all natural samples, and also have a higher range of DOC

Therefore it appears to be pH and DOC, but it may be something else specific to CTs that were not measured in this study

Summary/Conclusion

Occurrence of infected amoebae was significantly higher in cooling towers than in nature (16:1 odds ratio)

Non-Legionella were more common than Legionella, and half or more of these were not culturable

7 novel sequences were found, with several yet to be sequenced

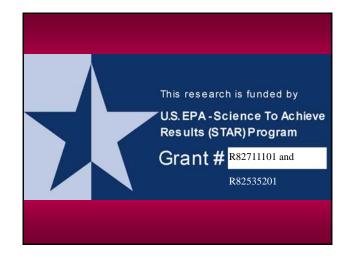
Environmental parameters?? Possibly pH and DOC

Update

Several other infected amoeba specimens have been observed in the past year—

Meat industry (3)

Eyewash station (TTU)


Fish tank in public pet store

Distribution pipes (MTSU)

Acknowledgments

- Center for the Management, Utilization and Protection of Water Resources, Tennessee Technological Univ.
- Middle Tennessee State University

Faculty/Associates: Dr. Mary Farone, Dr. Anthony Farone, Dr. John Gunderson, Dr. Anthony Newsome, Dr. Nizam Uddin

Numerous students: Witold Skolasinski, Kate Redding, Jennifer Skimmyhorn, Elizabeth Williams, Maryam Farsian, Josh Currie, James Ventrice, Chanson Boman, Allison Reid, Marya Fisher, Jon Thomas

Detection of Various Freshwater Cyanobacterial Toxins using Ultra-**Performance Liquid Chromatography-Tandem Mass Spectrometry**

Stuart A. Oehrle Waters Field Lab Northern Kentucky University Chemistry Department Highland Heights, KY 41076

Judy Westrick Lake Superior State University Chemistry Department Sault Ste. Marie, MI 49783

- This work was supported, in part, from the following grant - U.S. Environmental Protection Agency Grant (RD-83322301)
- Waters Corporation
- Lake Superior State University

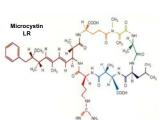
matrices. What is especially attractive about LC/MS/MS is its sensitivity and selectivity. Microcystins, in particular, represent an emerging class of algal toxins of concern to the drinking water industry. Recognizing the potential health risk, the World Health Organization, Australia, and Brazil have established guidelines for the amount of microcystins permissible in drinking water (specifically microcystin LR). Recently, the United States has begun to evaluate the occurrence, health effects, and susceptibility of water treatment of algal toxins. The Environmental Protection Agency (EPA) named freshwater algal toxins to its Contaminant Candidate List (CCL).

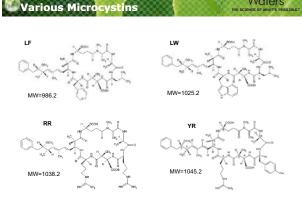
In this paper we investigate the use of newer technologies in smaller column packings (sub 2µm particles) to both improve the selectivity, speed, sensitivity and resolution to screen for many of these toxins (microcystins, anatoxin-a, and cylindrospermopsin) using Ultra-Performance Liquid Chromatography (UPLC®) combined with tandem mass spectrometry. Specific examples, including data from the recent Ohio river algae bloom in August, will be presented.

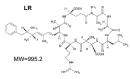
Waters

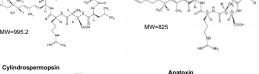
Waters

NORTHERN KENTUCKY UNIVERSITY LAKE SUPERIOR




Waters





©2008 Waters Corporation 4

Factors affecting cyanobacterial bloom formation:

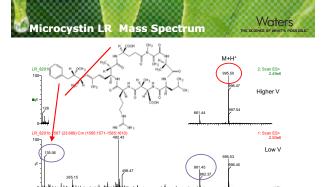
- Moderate to high levels of essential inorganic nutrients (nitrogen and phosphorus)
- some are nitrogen-fixing
- water temperature 10° to 30°C
- pH levels between 6 and 9
- low flow and low turbidity
- light is not a large factor phycobilin

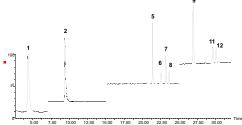
Pathway/Route of Exposure

Waters

- Recreational waters dermal, inhalation, and ingestion
- Drinking water ingestion, dermal, ingestion.
- Dietary Supplements ingestion
- Vegetables and Fruits ingestion

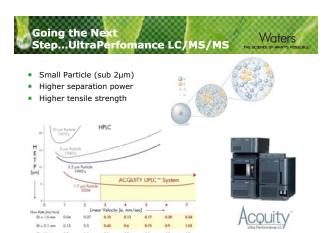
This is a "Global Challenge"

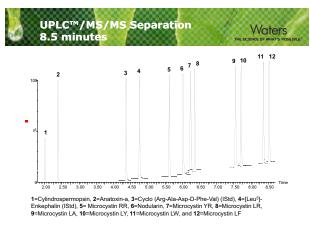

Waters Microcystin Detection Assa

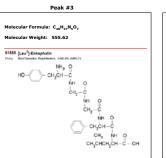

- Uses polyclonal antibodies against different microcystin variants.
- Samples are read spectrophotometrically to determine microcystin concentration.
- Detection limit in low ppb
- Cloudy or Murky samples pose a challenge

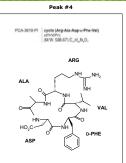
High-Performance LC

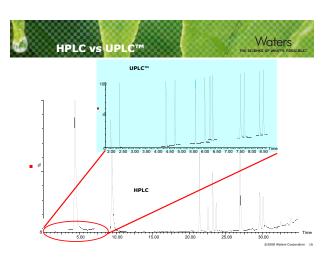
- Powerful separation capability
- UV detection (not sensitive w/o SPE)
- LC and Mass Spectrometry
 - Offers specificity and sensitivity

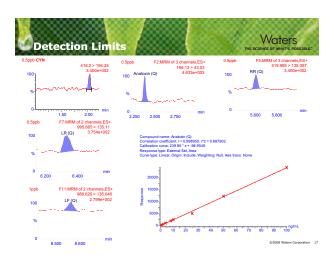


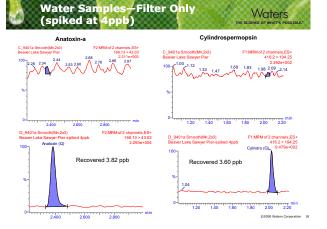



1=Cylindrospermopsin, 2=Anatoxin-a, 5= Microcystin RR, 6=Nodularin, 7=Microcystin YR, 8=Microcystin LR, 9=Microcystin LA, 11=Microcystin LW, and 12=Microcystin LF

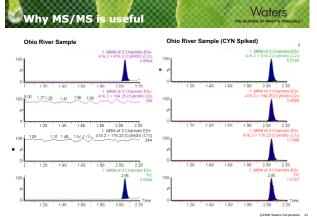

2.1X150mm Atlantis dC₁₈ (3.5µm)@30°C-0.29mL/min

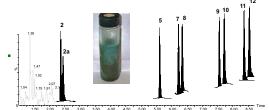






©2008 Waters Corporation




Water Samples—Filter Only (spiked at 4ppb) LR LR-Confirmatory ion

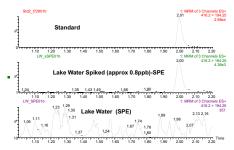
901 Smooth(Ma.2d) F7.MRM of 2 channels. ES+
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.11
905.055 - 105.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.055
905.055 - 905.05

Spiked

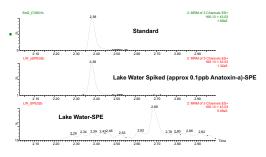
Extreme Water Sample Waters 11. 12

2=Anatoxin-a, 2a=Phe-Ala, 5= Microcystin RR, 7=Microcystin YR, 8=Microcystin LR, 9=Microcystin LA, 10=Microcystin LY, 11=Microcystin LW, and 12=Microcystin LF

Solid Phase Extraction (SPE) for Water Samples


- Current methodology exist for common microcystins using C18 based SPE
- Anatoxin and cylindrospermopsin add challenges to existing SPE protocols
- VERY Preliminary work has begun on using a multimodal SPE protocol* (2 multimodal cartridges for different analytes from a single water sample)
 - Load water onto 2 cartridges in series, than separate and process each separately for the different analyte sets
 - Run 2 injections per sample (one for Cylindro, the other for anatoxin and microcystins)

*Patent applied for



1 Cartridge (CYN only)

2 Cartridge (Anatoxin and Microcystins)

Conclusions Waters

- Separation of all main Microcystins, Anatoxin-a, and cylindrospermopsin is possible in under 10 minutes using UPLC as the separation device (versus 40 Minutes by HPLC)
- MS/MS offers enhanced selectivity and sensitivity
- Combined with new SPE method, one can easily go to sub ppb levels

Waters

- Waters Corporation
- Lake Superior State University

Ceptrolidos 25 @2008 Waters Cerporation 26 @

Questions?

©2008 Waters Corporation 28